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Optimally designing games
for behavioural research
Anna N. Rafferty1, Matei Zaharia1

and Thomas L. Griffiths2

1Computer Science Division, and 2Department of Psychology,
University of California, Berkeley, CA 94720 USA

Computer games can be motivating and engaging
experiences that facilitate learning, leading to
their increasing use in education and behavioural
experiments. For these applications, it is often
important to make inferences about the knowledge
and cognitive processes of players based on their
behaviour. However, designing games that provide
useful behavioural data are a difficult task that
typically requires significant trial and error. We
address this issue by creating a new formal framework
that extends optimal experiment design, used in
statistics, to apply to game design. In this framework,
we use Markov decision processes to model players’
actions within a game, and then make inferences
about the parameters of a cognitive model from these
actions. Using a variety of concept learning games, we
show that in practice, this method can predict which
games will result in better estimates of the parameters
of interest. The best games require only half as many
players to attain the same level of precision.

1. Introduction
Computer games have become increasingly popular
tools in education and the social sciences (e.g. [1–5]).
Within education, games can provide authentic contexts
for exploring scientific phenomena [6–8], and engage
students through storytelling and immersive, dynamic
environments [9]. Games can improve student learning
by adaptively providing tasks that are of appropriate
difficulty given the students’ knowledge and through
encouraging motivation and persistence [10–12]. Benefits
also hold for behavioural research. For psychology,
games provide a way of recruiting large numbers of
engaged participants, and offer a powerful method
for increasing participant satisfaction and diminishing

2014 The Author(s) Published by the Royal Society. All rights reserved.
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participant disinterest. They may also facilitate longer, more involved behavioural experiments.
However, designing games for education and psychological research can be difficult. These
games must provide insight into a student’s knowledge or cognitive processes, which requires
interpreting behaviour in the game. In order to gain as much information about these quantities
as possible, a game designer must adjust the settings of many parameters in a game, such as the
level design, the incentive structure and the placement of items within the game. This process
usually requires significant time and effort, normally based on trial and error.

Designing traditional experiments can also require significant time and effort. While the
number of parameters to adjust may be smaller, the experimenter must still set quantities such as
what time delays to include in a memory task or what treatment dosages to compare in a medical
experiment. The statistical theory of optimal experiment design aims to ease this problem by
identifying the design that will give the most information about the dependent variable [13,14].
In chemistry, this technique has been used to discover the value of various parameters relevant
to a reaction, making laboratory syntheses more successful (e.g. [15–17]), and the approach was
used to develop and validate a new method for synthesizing a compound that has now been used
in industry [18]. Optimal experiment design has also been used in pharmacology and clinical
applications (e.g. [19–23]), resulting in greater certainty about the effectiveness of new drug
therapies while reducing trial costs. Across fields, the idea of setting experiment parameters to
optimize the information gained about the phenomena under investigation has made it easier
to obtain precise answers while minimizing resource use (e.g. [24,25]).

In this paper, we introduce optimal game design, a new formal framework that extends
optimal experiment design to identify game designs that will diagnose people’s knowledge more
efficiently. We investigate how to identify the game design with maximal utility, where utility is
defined as the expected information gain about the parameters of a cognitive model. Like optimal
experiment design, our procedure takes an existing design and considers how to modify it to
be most informative. For traditional experiments, these modifications might include parameters
such as at what time intervals to test recall; for games, these modifications include parameters
like the amount of points for different types of accomplishments or the location and frequency
of particular objects in the game. The framework leverages the skills of human designers for
creating the initial game, and by automating the process of refining that game design, the
framework limits the trial and error necessary to find a game that will provide useful data.

Adapting optimal experiment design methods to game design requires predicting people’s
behaviour within games, which may differ from behaviour in more traditional behavioural
experiments. Typically, experiments have relatively simple incentive structures and individual
actions in an experiment are not dependent on one another. Games often include a variety of
competing incentives and actions in the game are likely to naturally build on one another. To
model people’s behaviour in games, we use Markov decision processes (MDPs), which are a
decision theoretic model for reasoning about sequential actions. This model incorporates the
added complexity of games by calculating both the current and future benefit of an action. By
combining MDPs with ideas from optimal experiment design, we create a framework for finding
the game that will provide the highest expected information gain about a question of interest. This
framework provides the potential to investigate psychological questions and estimate student
knowledge based on games, without needing to modify our questions to specifically account for
the game environment.

We first provide background on optimal experiment design and MDPs. We then combine these
ideas to create a framework for optimal game design. The remainder of the paper applies this
general framework to the specific case of learning Boolean concepts. We introduce a novel concept
learning game and use our approach to optimize the game parameters. Through behavioural
experiments, we show that optimized game designs can result in more efficient estimation of
the difficulty of learning different kinds of Boolean concepts. Our results demonstrate that this
estimation can be complicated by people’s own goals, which may not match incentives within the
game, but can be accommodated within our framework. We end by summarizing the benefits of
optimal game design as well as the limitations of this framework.
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2. Background
Our framework relies on ideas from Bayesian experiment design and MDPs, which we will
introduce in turn.

(a) Bayesian experiment design
Bayesian experiment design, a subfield of optimal experiment design, seeks to choose the
experiment that will maximize the expected information gain about a parameter θ [13,26]. In
psychology, this procedure and its variations have been used to design experiments that allow for
clearer discrimination between alternative models, where θ corresponds to an indicator function
about which of the models under consideration is correct [27,28]. Throughout this paper, let ξ be
an experiment (or game) design and y be the data collected in the experiment. The expected utility
(EU) of a game is defined as the expected information gain about the parameter θ

EU(ξ ) =
∫

p(y|ξ )U(y, ξ ) dy,

where p(y|ξ ) =
∫

p(y|ξ , θ )p(θ ) dθ

and U(y, ξ ) =
∫

(H(p(θ |y, ξ )) − H(p(θ ))) dθ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where H(p) is the Shannon entropy of a probability distribution p, defined as H(p) =∫
p(x) log(p(x)) dx. The Bayesian experimental design procedure seeks to find the experiment ξ

that has maximal EU. Intuitively, designs that are likely to result in more certainty about θ will
have higher utility.

(b) Markov decision processes
The Bayesian experiment design procedure uses p(θ |y, ξ ) to calculate the information gain from an
experiment. This quantity represents the impact that the data y collected from experiment ξ have
on the parameter θ . In a game, the data y are a series of actions, and to calculate p(θ |y, ξ ), we must
interpret how θ affects those actions. Via Bayes’ rule, we know p(θ |y, ξ ) ∝ p(y|θ , ξ )p(θ ). We thus
want to calculate p(y|θ , ξ ), the probability of taking actions y given a particular value for θ and a
game ξ . To do so, we turn to MDPs, which provide a natural way to model sequential actions.
MDPs and reinforcement learning have been used previously in game design for predicting
player actions and adapting game difficulty [29–31].

MDPs describe the relationship between an agent’s actions and the state of the world and
provide a framework for defining the value of taking one action versus another (for an overview,
see [32]). Formally, an MDP is a discrete time series model defined by a tuple 〈S, A, T, R, γ 〉, where
S is the set of possible states and A is the set of actions that the agent may take. At each time
t, the model is in a particular state s ∈ S. The transition model T gives the probability p(s′|s, a)
that the state will change to s′ given that the agent takes action a in state s. The reward model
R(s, a, s′) describes the probability of receiving a reward r ∈ R given that action a is taken in state s
and the resulting state is s′. For example, the reward model in a game might correspond to points.
Finally, the discount factor γ represents the relative value of immediate versus future rewards.
The value of taking action a in state s is defined as the expected sum of discounted rewards and
is known as the Q-value

Q(s, a) =
∑

s′
p(s′|s, a)

(
R(s, a, s′) + γ

∑
a′∈A

p(a′|s′)Q(s′, a′)

)
, (2.2)

where p(a′|s′) is the probability that an agent will take action a′ in state s′ and is defined by the
agent’s policy π . We assume that people are noisily rational actors: they are more likely to take
actions that they think have higher value. As in Baker et al. [33], this can be formally modelled
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as a Boltzmann policy p(a|s) ∝ exp(βQ(s, a)), where β is a parameter determining how close the
policy is to optimal. Higher values of β mean the agent is more likely to choose the action with
highest Q-value, while β = 0 results in random actions.

3. Optimal game design
We can now define a procedure for optimal game design, identifying the game with maximum
expected information gain about some theoretical quantity of interest θ . The optimal game design
framework improves an existing game by adjusting its parameters to be more diagnostic; these
parameters may correspond to point values, locations of items, or any other factor that can be
varied. To apply Bayesian experiment design to the problem of choosing a game design, we define
the expected utility of a game ξ as the expectation of information gain over the true value of θ

and the actions chosen by the players

EU(ξ ) = Ep(θ ,a)[H(p(θ )) − H(p(θ |a, ξ ))], (3.1)

where a is the set of action vectors and associated state vectors for all players. The expectation is
approximated by sampling θ from the prior p(θ ), and then simulating players’ actions given θ by
calculating the Q-values and sampling from the Boltzmann policy.

To compute EU(ξ ), the distribution p(θ |a, ξ ) must be calculated. Intuitively, this quantity
connects actions taken in the game with the parameter of the cognitive model that we seek to infer,
θ . For a game to yield useful information, it must be the case that people will take different actions
for different values of θ . Concretely, we expect that players’ beliefs about the reward model and
the transition model may differ based on θ . Then, the process of inferring θ from actions assumes
that each θ corresponds to a particular MDP. If this is the case, we can calculate a distribution over
values of θ based on the observed sequences of actions a of all players in the game ξ

p(θ |a, ξ ) ∝ p(θ )p(a|θ , ξ )

= p(θ )p(a|MDPθ , ξ )

= p(θ )
∏

i

p(ai|MDPθ , ξ ), (3.2)

where ai is the vector of actions taken by player i and MDPθ is the MDP derived for the game
based on the parameter θ . Calculating this distribution can be done exactly if there is a fixed set
of possible θ or by using Markov chain Monte Carlo (MCMC) methods if the set of θ is large or
infinite [34].

Now that we have defined p(θ |a, ξ ), we can use this to find the expected utility of a game.
Equation (3.1) shows that this calculation follows simply if we can calculate the entropy of the
inferred distribution. In the case of a fixed set of possible θ , H(p(θ |a, ξ )) can be calculated directly.
If MCMC is used, one must first infer a known distribution from the samples and then take the
entropy of that distribution. For example, if θ is a multinomial and p(θ ) is a Dirichlet distribution,
one might infer the most likely Dirichlet distribution from the samples and find the entropy of
that distribution.

We have now shown how to (approximately) calculate EU(ξ ). To complete the procedure
for optimal game design, any optimization algorithm that can search through the space of
games is sufficient. Maximizing over possible games is unlikely to have a closed form solution,
but stochastic search methods can be used to find an approximate solution to the game with
maximum expected utility. For example, one might use simulated annealing [35]. This method
allows optimization of discrete and continuous parameters, where neighbouring states of the
current game are formed by perturbations of the parameters to be optimized.

4. Optimal games for Boolean concept learning
We have described a general framework for automatically finding game designs that are likely
to be highly informative about model parameters. To test how well this framework identifies
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Dim. 1

Dim. 2

Dim. 3

I II III

IV V VI

Figure 1. Boolean concept structures. In each structure, eight objects differing in three binary dimensions are grouped into
two categories of four elements. Each object is represented as a corner of a cube based on its combination of features, and the
objects chosen for one category in each problem type are represented by dots.

informative designs, we applied it to a particular question: what is the relative difficulty of
learning various Boolean concept structures? This question has been studied extensively in past
work (e.g. [36–39]), so we can compare our results to those produced using more traditional
methods. We first describe Boolean concept learning, and then turn to the initial game we created
and the application of optimal game design.

(a) Boolean concepts
In Boolean concept learning, one must learn how to categorize objects that differ along several
binary dimensions. We focus on the Boolean concepts explored in [36]. In these concepts, there are
three feature dimensions, resulting in 23 possible objects, and each concept contains four objects.
This results in a total of 70 concepts with six distinct structures, as shown in figure 1. Shepard
et al. found that the six concept structures differed in learning difficulty, with a partial ordering
from easiest to most difficult of I > II > {III, IV, V} > VI [36]. Similar results were observed in later
work [37,38] although the position of type VI in the ordering can vary [39].

Using optimal game design to infer the difficulty of learning Boolean concepts requires a
computational cognitive model. We follow previous modelling work that assumes learners’
beliefs about the correct concept h can be captured by Bayes’ rule [39]

p(h|d) ∝ p(h)p(d|h)

= p(h)
∏
d∈d

p(d|h), (4.1)

where each d ∈ d is an observed stimulus and its classification, and observations are independent
given the category. The likelihood p(d|h) is then a simple indicator function. If the stimulus
classification represented by d matches the classification of that stimulus in hypothesis h, denoted
h � d, then p(d|h) ∝ 1; otherwise, p(d|h) = 0. We seek to infer the prior p(h), which represents the
difficulty of learning different concepts and thus gives an implicit ordering on structure difficulty.
In our earlier terminology, θ is a prior distribution on concepts p(h). For simplicity, we assume
all concepts with the same structure have the same prior probability, so θ is a six-dimensional
multinomial. Each θi represents the prior probability of a single concept of type i.

(b) Corridor Challenge
To teach people Boolean concepts, we created the game Corridor Challenge, which requires
learning a Boolean concept to achieve a high score. Corridor Challenge places the player in a
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Energy: 27 Level: 1 Score: –2

Symbols Seen

Good Symbols Bad Symbols

Figure 2. User interface for the Corridor Challenge game (Level 1 of the random game in experiment 1). In this screenshot, the
player has opened the first chest and moved to the second island.

corridor of islands, some of which contain a treasure chest, joined by bridges (figure 2).1 The
islands form a linear chain and the bridges can be crossed only once, so players cannot return to
previous chests. Some chests contain treasure, while others contain traps; opening a chest with
treasure increases the player’s score and energy, while opening a chest with a trap decreases
these values. Each chest has a symbol indicating whether it is a trap; symbols differ along three
binary dimensions and are categorized as a trap based on one of the Boolean concepts. Players
are shown a record of the symbols from opened chests and their meanings (see the right-hand
side of figure 2). Players are told to earn the highest score possible without running out of energy,
which is depleted by moving to a new island or opening a trapped chest. When a player runs out
of energy, the level is lost and she cannot explore the rest of the level; surviving a level earns the
player 250 points. Corridor Challenge games may consist of several levels. Each level is a new
corridor with different chests, but the same symbols are used and they retain the same meaning
as on the previous level. At the start of each level, the player’s energy is restored, but points are
retained from level to level.

(c) Optimizing Corridor Challenge
Applying optimal game design to Corridor Challenge requires specifying the parameters to
optimize in the search for the optimal game, formulating the game as an MDP, and specifying the
model for how the player’s prior on concepts (θ ) relates to the MDP parameters. The structure of
Corridor Challenge allows for many variants that may differ in the expected information gain. To
maximize expected information gain while keeping playing time relatively constant, we limited
the game to two levels, with five islands per level. We then used optimal game design to select
the number of points gained for opening a treasure chest, points lost for opening a trap chest, the
energy lost when moving, the symbols that appeared on the chests and the Boolean concept used
to categorize the chests. For simplicity, we assumed that the number of points gained (or lost) for
a particular action is equal to the amount of energy gained (or lost) for that particular action.

1Corridor Challenge uses freely available graphics from http://www.lostgarden.com/2007/05/dancs-miraculously-flexible-
game.html.
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Given particular specifications for these variants of the game, we can define an MDP. Note
that we define the MDP based on a player’s beliefs, since these govern the player’s actions, and
these beliefs do not include knowledge of the true concept that governs the classification of the
symbols.
States: the state is represented by the player’s energy, her current level and position in the level,
and the symbols on all chests in the current level.
Actions: the player can open the current chest (if there is one) or move to the next island.
Transition model: the player transitions to a new state based on opening a chest or moving to a new
island. In both cases, the symbols on the chests stay the same, with the current symbol removed
if the player opens the chest. If a player chooses to move, she knows what state will result: her
position will move forward one space and her energy will be depleted by a known constant. If the
result is negative energy, then the game transitions to a loss state. However, if a player opens a
chest, her beliefs about what state will occur next is dependent on p(h|d), her beliefs about the true
concept given the data d she has observed so far. The player will gain energy if the symbol x on
the current chest is in the concept. Taking an expectation over possible concepts h, this probability
is p(x in concept) =∑

h I(h � x)p(h|d), where I(h � x) = 1 if x is in the concept h and 0 otherwise. The
probability of decreased energy is (1 − p(x in concept)). Based on the Bayesian model mentioned
earlier, the player’s current beliefs p(h|d) are dependent on the prior probability distribution over
concepts. Thus, the transition model assumed by the player is dependent on the parameter θ that
we would like to estimate, which is this prior distribution.
Reward model: When the player moves from one island to another, the reward model specifies
R(s, a, s′) = 0, and when the player opens a chest, R(s, a, s′) is a fixed positive number of
points with probability p(x in concept) and a fixed negative number of points with probability
(1 − p(x in concept)).

By using the MDP framework and assuming that the player updates her beliefs after seeing
information, we ignore the value of information in understanding people’s decisions; that is, we
assume people make decisions based on their current information and do not consider the effect
that information gained now will have on their future decisions. We examine ways to relax this
assumption in §8.

5. Experiment 1: inferring difficulty
To test our framework, we first used the optimal game design procedure to find a version of
Corridor Challenge with high expected information gain, and then ran an experiment in which
players played either the optimized game or a randomly chosen game with lower expected
information gain.

(a) Optimization of Corridor Challenge
We used simulated annealing [35] to stochastically search over possible designs of Corridor
Challenge. The expected information gain of a game was approximated by sampling 35 possible
θ vectors uniformly at random (reflecting a uniform prior on θ ), simulating the actions of n = 25
players in the game, and using the simulated data to infer p(θ |ξ , a). We approximated p(θ |ξ , a)
using the Metropolis–Hastings MCMC algorithm [34], with a Dirichlet proposal distribution
centred at the current state. The parameter β for the Boltzmann policy was set to 1.

To execute the search, we parallelized simulated annealing by using several independent
search threads. Every five iterations, the search threads pooled their current states, and each
thread selected one of these states to continue searching from, with new starting states chosen
probabilistically such that states with high information gain were more likely to be chosen. Each
search state is a game, and the next state was found by selecting a parameter of the current game
to perturb. If the selected parameter was real-valued, a new value was chosen by sampling from a
Gaussian with small variance and mean equal to the current value; if the selected parameter was
discrete, a new value was selected uniformly at random.
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The stochastic search found games with significantly higher information gain than the initial
games, regardless of starting point. This demonstrates that the evaluation and search procedure
may be able to eliminate some trial and error in designing games for experiments. Qualitatively,
games with high information gain tended to have a low risk of running out of energy, at least
within the first few moves, and a diverse set of stimuli on the chests. These games also generally
had positive rewards with larger magnitudes than the negative rewards. The game with the
highest information gain used a true concept of type II, although several games with similarly
high information gain had true concepts with different structures. While the information gain
found for any given game is approximate, since we estimated the expectation over only a sample
of possible priors, this was sufficient to separate poor games from relatively good games; we
explore this relationship further in experiment 2.

(b) Methods
After optimizing Corridor Challenge, we conducted a behavioural experiment to assess whether
an optimized game resulted in greater information gain than a random game.
Participants. Fifty participants were recruited online and received a small amount of money for
their time.
Stimuli. Participants played Corridor Challenge with a parameters set based either on an
optimized game (expected information gain of 3.4 bits) or on a random game (expected
information gain of 0.6 bits).2 The symbols differed along the dimensions of shape, colour and
pattern.
Procedure. Half of the participants were randomly assigned to each game design, and played
the game in a web browser. Regardless of condition, the participants were shown text
describing the structure of Corridor Challenge, and then played several practice games to
familiarize them with interface. The first practice game simply had chests labelled ‘good’ and
‘bad’; the next three games used Boolean concepts of increasing difficulty based on previous
work. All practice games used different symbols from one another and from the final game.
Practice games used the point and energy values from the game chosen for their condition (i.e. the
random game or the game found by the search) in order to make players aware of these values,
but the symbols in the practice games were identical across conditions. The fifth and final game
was chosen based condition: either the optimized game or the random game. After completing
the final game, participants were asked to rate how fun and how difficult the game was, both on
7-point Likert scales. Additionally, they were shown the stimuli and categorization information
that they observed during the final game, and asked to classify the remaining stimuli from the
game that were not observed.

(c) Results
To assess the information gained from each game, we calculated posterior distributions over the
prior probability of each Boolean concept based on the players’ actions. These distributions were
calculated using a Metropolis–Hastings algorithm on both the prior and the noise parameter β.
Samples were generated from five chains with 100 000 samples each; the first 10% of samples from
each chain were removed for burn-in. To infer the actual information gained for each game, we
infer the maximum-likelihood Dirichlet distribution based on these samples from the posterior.
We then calculate the entropy of the inferred Dirichlet. The difference between this entropy and
the entropy of the (uniform) prior distribution is the actual information gain of the game.

Figure 3 shows the inferred distribution over the prior probability of learning a concept of
each type (θi) based on participants’ actions for the optimized game and the random game; if
a concept has higher prior probability, it will be easier to learn. Qualitatively, the distributions
inferred from the optimized game appear more tightly concentrated than those from the random

2All game specifications and data recording participants’ gameplay can be found at http://cocosci.berkeley.edu/data/
optimal-games-data/OptimalGameDesignData.html.
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Figure 3. Results of experiment 1, in the form of posterior distributions on concept difficulty from participants’ responses in
(a) the optimized game and (b) the random game; red lines indicate the mean of each distribution. Each panel shows the
distribution over the inferred difficulty of a concept with the given structure (types I–VI), as reflected by its prior probability in
the Bayesianmodel. Conceptswith higher prior probability are easier to learn. Note the logarithmic scale on the prior probability
of each θi .

game; this is confirmed by the actual information gain, which was 3.30 bits for the optimized game
and 1.62 bits for the random game. This implies that we could halve the number of participants
by running the optimized game rather than the random game, while achieving the same level
of specificity. The amount of information gained by the optimized game was very similar to the
predicted information gain, while for the random game, somewhat more information was gained
than predicted (1.62 bits versus 0.6 bits). The higher information gain could be the result of error in
the prediction of expected information gain: the calculation of this quantity is an approximation,
with only a finite number of possible θ vectors sampled to create simulated action vectors. The
discrepancy could also result from particulars of the true value of θ . The expected utility is
calculated over all possible θ , since its true value is unknown. However, when calculating actual
information gain, only the value of θ that reflects participants’ cognitive processes is relevant.
While the issue of approximation can be lessened by sampling additional θ , the latter issue is
inherent to the process of predicting information gain. In experiment 2, we further explore the
connection between expected and actual information gain.

For both games, the ordering of the mean prior probabilities of a concept of each type, shown
by red lines in figure 3, is the same as that found in previous work, except for type VI. Our inferred
distributions for a concept of type VI placed significant probability on a broad range of values,
suggesting that we simply did not gain much information about its actual difficulty. We do infer
that type VI is easier than types III, IV or V, consistent with some previous findings [39].

6. Experiment 2: estimating information gain
To verify the relationship between actual and expected information gain, we conducted a second
experiment in which players played games with a range of information gains. To isolate the
impact of the symbols on the chests and the true concept, we fixed the point structures to those
found for the optimized game in experiment 1 and conducted new searches over the remaining
variables. We then selected games that had varying expected information gains, demonstrating
that even without changing the incentive structure a range of information gains was possible.

(a) Methods
Participants. A total of 475 participants were recruited online and received the same payment as
in experiment 1.
Stimuli. Participants played one of 19 new games. The 19 new game designs were selected
by recording the game design and expected information gain for each iteration of simulated
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Figure4. Results of experiment 2. (a) Expectedversus actual informationgains (r(18)= 0.51,p< 0.025). Each circle represents
a game, and the least-squares regression line is shown. (b) Actual information gain for the 10 games with lowest expected
information gain versus the highest expected information gain.

annealing. For this experiment, the points were fixed to be the same as in the optimized game
in experiment 1, so the search only varied the object on each chest and the true category. We then
ran 19 independent search processes, each with a different initial game. From the resulting games,
we hand-selected one game from each search thread such that the new collection of games had
roughly evenly spaced information gains.
Procedure. Procedure matched experiment 1.

(b) Results
We compared the actual and expected information gains for the 19 new games and the optimized
game from experiment 1, all of which used the same point structure. As shown in figure 4a,
expected and actual information gain were positively correlated (r(18) = 0.51, p < 0.025). While
this correlation might seem modest, it has significant consequences for efficiency: on average, the
10 games with the highest expected utility resulted in a gain of 67% more bits of information than
the 10 games with lowest expected utility (figure 4b).

One potential objection to the optimal game design framework is that considerable
computational power is necessary to predict expected utility. We thus explored whether heuristics
based on features of the game might be sufficient to predict information gain. As shown
in figure 5a, the expected utility of the games showed the highest correlation with actual
information gain, although the total number of unique symbols was also positively correlated
with information gain (r(18) = 0.46, p < 0.05). While optimal game design and this heuristic have
relatively similar correlations with information gain, we believe that there is still an advantage
in using the optimal game design framework, as this approach does not require generating
appropriate heuristics for different games and it may not be intuitively obvious which heuristics
will be good predictors of information gain. For example, the total number of treasure chests
was negatively correlated with information gain, although this correlation was not significant.
Additionally, as the number of features to optimize increases, the number of possible heuristics
will also increase, making it difficult to choose a heuristic to rely on via intuition; we return to this
issue in experiment 3.

7. Experiment 3: sensitivity to rewards
In experiment 2, we showed that expected and actual information gain were correlated for a range
of game designs. All of these game designs had the same incentive structure; the only differences

 on May 8, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


11

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130828

...................................................

(b) experiment 3: correlation between actual information gain
with custom rewards and potential predictive features 
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Figure 5. Correlations between proposed heuristics for predicting information gain and the actual information gain.
(a) Correlations for experiment 2. Expected utility (as calculated using optimal game design) has the highest correlation,
and number of unique chests is the only heuristic with a significant correlation to actual information gain. (b) Correlations
for experiment 3. The correlations to information gain for the value of the trap chest and for expected utility are of similar
magnitude, but only expected utility is consistently predictive across the two experiments.
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Figure 6. Results of experiment 3. (a) Expected versus actual information gains with point-based reward (r(18)= 0.38,
p= 0.1). Each circle represents a game, and the least-squares regression line is shown. (b) Expected versus actual information
gains with inferred custom rewards (r(18)= 0.74, p< 0.001).

were the categories being learned and the placement of items within the games. It is also possible
to vary the rewards in the game designs, as was done in experiment 1. This raises the question of
how much people will internalize the reward structure and behave rationally with respect to it.
People may incorporate their own goals into the game, such as wanting to learn about the true
concept rather than maximize points, and thus exhibit unexpected behavioural changes based
on different reward structures. To investigate this possibility, we generated 18 additional games
with a range of expected information gains, allowing the incentive structure as well as the other
parameters of the game design to change.

(a) Methods
Participants. A total of 450 participants were recruited online and received the same payment as
in experiments 1 and 2.
Stimuli. Participants played one of 18 new games. The search method for this experiment was
the same as for experiment 2 except that the point values for opening a treasure or trap chest
and the energy lost for movement were allowed to vary. All games came from search threads
with independent starting points, and games were hand-selected to span a range of expected
information gains.
Procedure. Procedure matched experiment 1.

(b) Results
We analysed the data from these new games combined with the data from the two games
in experiment 1. We first calculated the actual information gain about the prior distribution
over concept types, assuming the participants’ reward functions reflected the point structure.
As shown in figure 6a, the correlation between expected and actual information gain was not
significant (r(18) = 0.38, p = 0.1). Inspection of participants’ actions showed some choices that
seemed unlikely to be rational with respect to the model. For instance, a participant might
choose to open a chest even when she had low energy and little information about the concept,
despite the fact that she could reach the end of the level without this action and earn the large
level completion bonus. From the perspective of the model, this action is only predicted if the
participant places very high probability on this being a treasure chest.
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To test whether participants might be acting based on a different reward function than that
given by the incentive structure, we modified the inference procedure to infer a reward function
for each game based on the participants’ actions. Previously, the inference procedure inferred
a posterior distribution over the hypothesis space of six-dimensional multinomials; now, we
changed the hypothesis space to be possible reward functions. These functions were specified
by the value of opening a treasure chest, the value of opening a trap chest and the value of
completing the level. We constrained these values such that the value of opening a treasure chest
and of completing the level were non-negative and the value of opening a trap chest was non-
positive. We fixed the prior distribution to be equal to the mean of the posterior distribution
from the optimized game in experiment 1.3 MCMC sampling then proceeded as in experiment 1,
resulting in a posterior distribution over the values for the parameters of the reward function.

The results showed that participants do seem to be acting based on a different reward function
than that given by the point structure. While the reward function varies across games, as expected
given that the point structure is likely to have some influence on behaviour, it consistently places
relatively low value on completing the level. This could reflect the fact that completing a level is
not inherently rewarding to participants. Participant comments are consistent with people being
more motivated by understanding the game than achieving maximal points. For instance, one of
the most frequent comments by those who did not enjoy the game was that they were ‘confused’
by the rule or that they did not understand the pattern. Thus, opening chests might be expected
to have higher intrinsic reward than completing the level, despite the point structure.

One of the goals of inferring the participants’ reward functions was to determine whether
using the inferred functions would lead to a correlation between expected and actual information
gain. If the confounding factor in the original analysis was the incorrect reward functions, then
using these functions to re-calculate both the expected and actual information gains should lead to
similar results as in experiment 2. Thus, we fixed the reward function for each game to match the
mean of the posterior distribution over reward functions for that game, and then used the original
inference algorithm to infer a posterior distribution over the difficulty of learning the six different
concept types. As shown in figure 6b, expected and actual information gain are in fact correlated
when the inferred custom reward functions are used (r(18) = 0.74, p < 0.001). This demonstrates
the importance of knowing participants’ goals when interpreting their actions. A participant’s
actions are only meaningful within the context of her goals and her understanding of how her
actions affect her progress towards those goals. While participant actions can be used to make
inferences about these factors, this may lead to incorrect conclusions if our assumptions about the
relevant factors are wrong.

To determine whether heuristics would also be effective predictors of information gain,
we calculated seven heuristics based on the characteristics of the games. Four were the same
heuristics as in experiment 2, while three were based on the reward functions, which were
the same across all games in experiment 2. We used the inferred custom rewards for these
heuristics since the original rewards were inconsistent with participant behaviour. As shown in
figure 5b, some of these heuristics are quite good at predicting expected utility. The value of a
trap chest even has a slightly higher magnitude correlation with information gain than expected
utility (r(18) = −0.78, p < 0.001). Heuristics thus can be effective at predicting information gain.
However, their effectiveness seems to be less consistent than expected utility: the best heuristic for
experiment 2, the total number of unique symbols, has only a small correlation with information
gain for experiment 3 (r(18) = 0.066, p > 0.7), and the best heuristic for experiment 3, the value
of a trap chest, would have no correlation with information gain for the games in experiment 2
since those games all shared the same reward function. By contrast, expected utility as calculated

3In principle, one could jointly infer both an arbitrary reward function and the prior distribution, but in practice, this leads to
identifiability issues wherein very different parameter configurations all have similar posterior probability. Since our interest
here is whether there exists a custom reward configuration that would explain the participants’ actions and we have a good
estimate of the prior distribution from the previous game, fixing the prior distribution gives the best estimate of the reward
functions.
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by optimal game design is highly correlated with information gain for both sets of games. This
suggests that the computational cost of optimal game design is balanced by its greater consistency.

8. Extensions to the Markov decision process framework
We have demonstrated how MDPs can be used to interpret players’ actions within games.
Our results show that we can predict which games will result in more information gain and
that our inferences about the difficulty of Boolean concepts are consistent with previous work.
However, our analyses do not consider players’ reasoning about how their actions will affect
the information they have to be successful in the game. When a player opens a chest, she gains
information about the true concept governing the meaning of the symbols, which might lead
her to open a chest primarily to improve her ability to choose actions in the future. While
incorporating, this factor is more computationally challenging than the analysis we have provided
thus far, we now explore two extensions to the MDP framework related to players’ reasoning
about changes in their knowledge based on their actions. First, we use partially observable MDPs
to analyse the results of experiment 1, determining whether ignoring this factor is leading to
incorrect inferences. Then, we explore a computationally tractable approximation to information
gain that can be included in the MDP analysis.

(a) Analysing actions via partially observable Markov decision processes
In the MDP formulation, we assume that players’ beliefs about the true concept govern the
transition and reward models that they believe are operating in the game. These beliefs are
updated after they open a chest, but the Q-values for each action do not take into account the
fact that when a chest is opened, players’ beliefs will change. An alternative analysis that does
take this information into account is to assume that the true concept is an unobserved part of
the state of the game. The player then does not know the state of the game at each time point,
but may gain information about the state by opening chests. Since knowing the state may prove
advantageous for choosing actions, this may lead the player to open more or different chests.

Including information in the state that is unobserved corresponds to modelling the game
as a partially observable Markov decision process (POMDP). POMDPs are frequently used
to model sequential decision-making situations where relevant information cannot be directly
observed [40,41]. Formally, a POMDP is defined by the same components as an MDP (the tuple
〈S, A, T, R, γ 〉), plus an observation model O and a set of possible observations Z. The observation
model defines conditional probability distributions p(z|s, a) for z ∈ Z. Since all or part of the state
is unobserved, the observations can be used to gain information about the underlying state. For
example, in the case of Corridor Challenge, the observations correspond to seeing that a chest
is a trap or a treasure, and based on the symbol that was on the opened chest, this observation
will rule out particular concepts. Because parts of the state are unobserved in a POMDP, the
Markov property making future actions independent of past actions no longer holds. Agents
must consider the history of past actions and observations in their choices, as these can be used to
make inferences about the state. Typically, agents are modelled as choosing actions based on their
belief state b(st), which is the distribution over possible states at time t given the actions taken and
observations collected. This is a sufficient statistic for representing information from past actions
and observations. After each action, the belief state is updated based on the transition and reward
model. For a given state i, the updated probability b(s(t+1) = i) that the game is in state i at time
t + 1 is

b(s(t+1) = i) ∝
∑
j∈S

b(st = j)p(s(t+1) = i|st = j, at)p(zt+1|st+1 = i, at). (8.1)

Computationally, this dependence on the past means that POMDPs are much more expensive
than MDPs. While a number of POMDP solution methods have been developed (e.g. [42–44]),
most make use of the assumption that actions are chosen optimally, allowing lower value actions
to be ignored. To account for the fact that people do not always choose the optimal action, we can
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approximate a Boltzmann policy for a POMDP by assuming p(at|b(st)) ∝ exp(βQ∗(b(st), a)), where
Q∗(b(st), a) is the optimal Q-function for a given action and belief state; this is consistent with
other work using Boltzmann policies for POMDPs [45]. Calculating this policy requires access
to the Q-functions, which eliminates many approximate POMDP solution methods that calculate
only upper and lower bounds on the Q-function in order to obtain an (approximate) optimal
policy more quickly.

To explore the results obtained using a POMDP representation, we modelled the games in
experiment 1 using a POMDP. As described earlier, the state is now composed of the unobserved
concept governing the meaning of the symbols as well as the observed components present
in the MDP representation: the symbols remaining in the level and the energy of the player.
The actions and the component of the transition model corresponding to the observed part of
the state are the same as in the MDP representation. This definition ignores the fact that in
Level 1, the next level of the game could also be treated as an unobserved part of the state.
However, there are 95 possible configurations of the chests in the second level (five spots for
chests, each of which can be empty or have one of eight chests). This results in an extremely large
number of states if all possibilities for the second level are considered; assuming that people are
not considering all possibilities for the second level and may not even have been paying attention
to the directions indicating that there is a second level, we ignore these possibilities in our
definition of the state. Since the underlying concept is the same through the game, the transition
model for the unobserved concept is the identity. The reward function also does not change for
the POMDP representation. The observation model has p(z = treasure|s, a = open) equal to 1 if the
symbol at the current location is in the underlying concept for state s and 0 otherwise; similarly,
p(z = trap|s, a = open) = 1 if the symbol at the current location is not in the underlying concept for
state s. If the action is move rather than open, the observation is null: no new information is gained
about the underlying concept. Given these definitions for each part of the POMDP, we generated
a POMDP specification for each level of both of the games in experiment 1, and then used the
pomdp-solve library to solve for a POMDP policy for each level [46]. pomdp-solve uses actual
Q-values, rather than bounds, and thus its output can be used to find the approximate Boltzmann
policy described earlier.

To use the POMDP solution to infer the difficult of Boolean concepts, we must tie the prior
distribution over concepts, θ , to the players’ actions in the game. Since the belief state b(st)
represents the player’s beliefs about the probability of each concept after the first t actions and
observations, the initial belief state b(s0) that characterizes the player’s beliefs before seeing
any information corresponds to the prior distribution over concepts. Thus, we can use MCMC
sampling to find a distribution over possible priors, with the only change for different samples
being the initial belief state. Unlike in the MDP analysis, the transition and reward models are the
same across samples.

Using the same sampling procedure as for the MDP analysis, we found that our inferences
about the prior for the two games in experiment 1 were consistent with the results of our initial
analysis. For both games, we find that type I concepts are easier than type II concepts, which are
easier than concepts of type III, IV or V (figure 7). The difference between a concept in type II
and a concept in type IV was less pronounced than in the MDP analysis, but the POMDP analysis
still finds θ2 > θ4. As before, the difficulty of type VI concepts is less clear, with little information
gained and a some samples in which θ6 was relatively large. The consistency between these results
and those in experiment 1 is encouraging, as it suggests that at least in some cases, the inferences
made by the MDP analysis are a good approximation for the less tractable POMDP analysis.

(b) Incorporating information gain into the reward function
While our analysis suggests that including the value of information in the form of a POMDP does
not affect the inferences that result from our modelling framework for experiment 1, it remains
possible that people are sensitive to this factor. Since POMDP planning is computationally
intensive, it is valuable to consider a more tractable strategy for incorporating the value of
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Figure 7. Results of analysing data from experiment 1 using POMDPs, in the form of posterior distributions on concept difficulty
from participants’ responses in (a) the optimized game and (b) the random game; red lines indicate the mean of each
distribution. Each panel shows the distribution over the inferred difficulty of a concept with the given structure (types I–VI).
Note the logarithmic scale on the prior probability of each θi .

information into our model of decision-making. One way to do this is to adopt the approach
we used in experiment 3, estimating the contribution of value of information as an aspect of
the reward function. We augment the reward function in the MDP analysis with a term for the
player’s expected information gain from the chosen action; that is, how much more certainty
will the player be likely to have about the concept after taking this action than before taking the
action? While the player’s expected information gain in a single step does not directly account for
whether the new certainty will enable better choices, it provides a computationally inexpensive
way to model the fact that in some cases, people may be motivated by learning more about the
underlying concept.

To include information gain in the reward function, we set RIG(s, a, s′) = R(s, a, s′) + w · �H,
where R(s, a, s′) is the reward without including information gain and �H is the change in
entropy in the player’s estimated posterior distribution over concepts based on observing the
results of taking action a in state s. The parameter w controls the weighting of information gain
within the reward function. We then used the players’ actions to infer a posterior distribution
over the parameter w as well as the parameters in the original reward function, fixing the
transition function to the mean of the inferred transition function from the optimized game in
experiment 1. The only difference between this procedure and that in experiment 3 is that w can
have non-zero weight.

Using this procedure, we found the weight of information gain in each of the reward functions
for the 20 games in experiment 3. We used data from experiment 3 due to the evidence we found
in our analysis of the custom reward functions that players may have been motivated by their
own goals in these games. Information gain was always inferred to have a positive weight, except
in one game where inspection of the samples showed that this parameter was covarying with
the point value of opening a treasure chest. This suggests that there are cases where people are
sensitive to information gain.

To explore how the new reward functions affected the relationship between expected and
actual information gain, we then fixed the reward functions and inferred the prior distribution
over Boolean concepts, again as in experiment 3. As shown in figure 8, expected and actual
information gain were correlated (r(18) = 0.82, p < 0.001). This correlation value is similar to that
found in experiment 3 (r(18) = 0.74). Using the deviance information criterion (DIC; [47]), we
compared the fit of the model with information gain and the model without information gain
for each game. DIC is related to other information criterion measures and controls for differences
between models in the effective number of parameters. This measure is easily computed from
MCMC samples; lower DIC reflects a better model fit. The average DIC over the 20 games
was 203 for the models with information gain (median: 204), compared to 212 for the models
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Figure 8. Results of experiment 3when an inferred reward function that includes information gain is used to estimate the prior
distribution over Boolean concepts (r(18)= 0.82, p< 0.001). Each circle represents a game, and the least-squares regression
line is shown.

without information gain (median: 220). This difference suggests that the model which includes
information gain is a somewhat better fit to the data than the model without this parameter.
Together with the previous analysis, this suggests that while value of information does not
always significantly affect players’ choices, there are cases where players’ behaviour likely
reflects some attention to this factor. In general, players may be influenced by a combination
of incentives, some extrinsic and provided by the game and some intrinsic and reflecting a desire
to learn and understand. Including a factor related to information gain in the reward function
is a tractable approximation for the full POMDP analysis, and if this factor was set prior to
the optimization, optimal game design could incorporate information gain when searching for
the best game design.

9. Discussion
Refining a game to be diagnostic of psychologically or educationally relevant parameters can
be a time-consuming process filled with trial and error. While the exact incentive structure or
placement of objects in a game may have little impact on how enjoyable or engaging the game is,
these factors can significantly impact how useful the game is for diagnosing players’ knowledge.
We have presented a general framework for deciding how to set these factors by predicting which
game designs will have the highest expected information gain. This framework adapts ideas from
optimal experiment design and relies on MDPs to link players’ actions to cognitively relevant
model parameters. We now consider several possible challenges as well as future directions for
this framework.

Our framework relies upon the idea that people behave in noisily optimal ways based on
their current knowledge and goals. In experiment 3, we saw that invalid inferences can be drawn
when one makes incorrect assumptions about one of these factors. Thus, care must be taken
to monitor whether the MDP model is a good fit to participants’ behaviours, especially since
optimization can magnify errors due to model assumptions. One recourse is to modify the task,
instructions or model to more closely align the model’s assumptions and the participant’s beliefs.
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For instance, to more closely align model and participant reward functions in experiment 3,
one might give points for opening a chest with a previously unopened symbol, making the
game’s incentive structure closer to that which participants bring to the task. Alternatively, one
might give monetary rewards based on the points the participant earned, making it more likely
that participants will respond based on the game’s reward structure. Results in behavioural
economics suggest that aligning monetary incentives with participants’ performance results in
choices that are more consistent with behaviour outside of an experimental setting, as choices
in the experiment have real consequences (e.g. [48]); for games, this is likely to result in behaviour
that is more consistent with the game’s incentive structure, since this structure will have an effect
on participants’ monetary rewards.

In §8, we considered extensions to the MDP framework that could allow us to incorporate
the value of information into understanding players’ actions. We highlighted a tension between
incorporating the exact value of information, as in the POMDP analysis, and using an
approximation that could be included within the optimization of game design. Incorporating
information gain may be especially important in the case of games involving inquiry skills,
where part of the challenge is in determining what information to gather to solve a problem.
In some cases, the approximation of including the information gain at only a single step (as
in the modified reward functions in §8) may be too limited, especially if players must use
several actions to uncover information in the game. In that case, it may be necessary to consider
other approximations or to attempt to use a POMDP analysis when using the optimal game
design framework. Correlations between actual and expected information gain are likely to
be much higher when the same representation (MDP or POMDP) is used for prediction and
analysis of results. The use of a Boltzmann policy significantly slows computation with the
POMDP, since many approximation methods cannot be used. To allow POMDPs to be used
within the optimization, one might relax the assumption of a Boltzmann policy for prediction
and instead use an optimal policy, reverting to the Boltzmann policy when analysing behavioural
results. Exploration of this strategy is necessary to determine its effectiveness in the types of
inquiry-oriented games where POMDPs are likely to be most beneficial.

Games are increasingly popular tools for research in a variety of areas, including psychology,
cognitive science and education. While games address some issues in traditional experiments,
such as flagging motivation or difficulty introducing participants to a complex task, they also
create new challenges: it can be difficult to interpret game data to draw conclusions about
the research questions, and there may be many possible game designs that a researcher could
use, without clear reasons to choose one over the other. We have created an optimal game
design framework that provides a way to guide game design and choose designs that are
more diagnostic. Beyond providing a principled approach to choosing a game design, more
diagnostic games offer key benefits for research. More diagnostic games allow fewer participants
to be used to gain the same information about a research question, providing the potential
for drawing conclusions more quickly or for asking more complex questions that would
otherwise require a prohibitive number of participants. In education, games can be used to assess
students’ knowledge. By diagnosing knowledge more accurately or over a shorter period of time,
instruction can be better targeted to individual learners and more time can be spent on learning
rather than assessing. While there are many future directions in which the framework could be
extended, this work provides a starting point for more principled approaches to designing games
for education and behavioural research.
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