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Abstract
The Sapir-Whorf hypothesis holds that our thoughts are shaped by our native language,

and that speakers of different languages therefore think differently. This hypothesis is con-

troversial in part because it appears to deny the possibility of a universal groundwork for

human cognition, and in part because some findings taken to support it have not reliably

replicated. We argue that considering this hypothesis through the lens of probabilistic infer-

ence has the potential to resolve both issues, at least with respect to certain prominent find-

ings in the domain of color cognition. We explore a probabilistic model that is grounded in a

presumed universal perceptual color space and in language-specific categories over that

space. The model predicts that categories will most clearly affect color memory when per-

ceptual information is uncertain. In line with earlier studies, we show that this model

accounts for language-consistent biases in color reconstruction from memory in English

speakers, modulated by uncertainty. We also show, to our knowledge for the first time, that

such a model accounts for influential existing data on cross-language differences in color

discrimination from memory, both within and across categories. We suggest that these

ideas may help to clarify the debate over the Sapir-Whorf hypothesis.

Introduction
The Sapir-Whorf hypothesis [1, 2] holds that our thoughts are shaped by our native language,
and that speakers of different languages therefore think about the world in different ways. This
proposal has been controversial for at least two reasons, both of which are well-exemplified in
the semantic domain of color. The first source of controversy is that the hypothesis appears to
undercut any possibility of a universal foundation for human cognition. This idea sits uneasily
with the finding that variation in color naming across languages is constrained, such that
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certain patterns of color naming recur frequently across languages [3–5], suggesting some sort
of underlying universal basis. The second source of controversy is that while some findings
support the hypothesis, they do not always replicate reliably. Many studies have found that
speakers of a given language remember and process color in a manner that reflects the color
categories of their language [6–13]. Reinforcing the idea that language is implicated in these
findings, it has been shown that the apparent effect of language on color cognition disappears
when participants are given a verbal [7] (but not a visual) interference task [8, 11, 12]; this sug-
gests that language may operate through on-line use of verbal representations that can be tem-
porarily disabled. However, some of these findings have a mixed record of replication [14–17].
Thus, despite the substantial empirical evidence already available, the role of language in color
cognition remains disputed.

An existing theoretical stance holds the potential to resolve both sources of controversy. On
the one hand, it explains effects of language on cognition in a framework that retains a univer-
sal component, building on a proposal by Kay and Kempton [7]. On the other hand, it has the
potential to explain when effects of language on color cognition will appear, and when they will
not—and why. This existing stance is that of the “category adjustment”model of Huttenlocher
and colleagues [18, 19]. We adopt this stance, and cast color memory as inference under uncer-
tainty, instantiated in a category adjustment model, following Bae et al. [20] and Persaud and
Hemmer [21]. The model holds that color memory involves the probabilistic combination of
evidence from two sources: a fine-grained representation of the particular color seen, and the
language-specific category in which it fell (e.g. English green). Both sources of evidence are rep-
resented in a universal perceptual color space, yet their combination yields language-specific
bias patterns in memory, as illustrated in Fig 1. The model predicts that such category effects
will be strongest when fine-grained perceptual information is uncertain. It thus has the poten-
tial to explain the mixed pattern of replications of Whorfian effects in the literature: non-repli-
cations could be the result of high perceptual certainty.

In the category adjustment model, both the fine-grained representation of the stimulus and
the category in which it falls are modeled as probability distributions over a universal percep-
tual color space. The fine-grained representation is veridical (unbiased) but inexact: its distri-
bution is centered at the location in color space where the stimulus itself fell, and the variance
of that distribution captures the observer’s uncertainty about the precise location of the stimu-
lus in color space, with greater variance corresponding to greater uncertainty. Psychologically,
such uncertainty might be caused by noise in perception itself, by memory decay over time, or
by some other cause—and any increase in such uncertainty is modeled by a wider, flatter distri-
bution for the fine-grained representation. The category distribution, in contrast, captures the
information about stimulus location that is given by the named category in which the stimulus
fell (e.g. green for an English-speaking observer). Because named color categories vary across
languages, this category distribution is assumed to be language-specific—although the space
over which it exists is universal. The model infers the original stimulus location by combining
evidence from both of these distributions. As a result, the model tends to produce reconstruc-
tions of the stimulus that are biased away from the actual location of the stimulus and toward
the prototype of the category in which it falls.

As illustrated in Fig 2, this pattern of bias pulls stimuli on opposite sides of a category
boundary in opposite directions, producing enhanced distinctiveness for such stimuli. Such
enhanced distinctiveness across a category boundary is the signature of categorical perception,
or analogous category effects in memory. On this view, language-specific effects on memory
can emerge from a largely universal substrate when one critical component of that substrate is
language-specific: the category distribution.
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Fig 1. Model overview. A stimulus is encoded in two ways: (1) a fine-grained representation of the stimulus itself, shown as a (gray) distribution over
stimulus space centered at the stimulus’ location in that space, and (2) the language-specific category (e.g. English “green”) in which the stimulus falls,
shown as a separate (green) distribution over the same space, centered at the category prototype. The stimulus is reconstructed by combining these two
sources of information through probabilistic inference, resulting in a reconstruction of the stimulus (black distribution) that is biased toward the category
prototype. Adapted from Fig 11 of Bae et al. (2015) [20].

doi:10.1371/journal.pone.0158725.g001

Fig 2. Category effects from biased reconstruction.Model reconstructions tend to be biased toward category prototypes, yielding enhanced
distinctiveness for two stimuli that fall on different sides of a category boundary. Categories are shown as distributions in green and blue; stimuli are shown as
vertical black lines; reconstruction bias patterns are shown as arrows.

doi:10.1371/journal.pone.0158725.g002
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If supported, the category adjustment model holds the potential to clarify the debate over
the Sapir-Whorf hypothesis in three ways. First, it would link that debate to independent prin-
ciples of probabilistic inference. In so doing, it would underscore the potentially important role
of uncertainty, whether originating in memory or perception, in framing the debate theoreti-
cally. Second, and relatedly, it would suggest a possible reason why effects of language on color
memory and perception are sometimes found, and sometimes not [17]. Concretely, the model
predicts that greater uncertainty in the fine-grained representation—induced for example
through a memory delay, or noise in perception—will lead to greater influence of the category,
and thus a stronger bias in reproduction. The mirror-image of this prediction is that in situa-
tions of relatively high certainty in memory or perception, there will be little influence of the
category, to the point that such an influence may not be empirically detectable. Third, the
model suggests a way to think about the Sapir-Whorf hypothesis without jettisoning the
important idea of a universal foundation for cognition.

Closely related ideas appear in the literature on probabilistic cue integration [22–25]. For
example, Ernst and Banks [24] investigated perceptual integration of cues from vision and
touch in judging the height of an object. They found that humans integrate visual and haptic
cues in a statistically optimal fashion, modulated by cue certainty. The category adjustment
model we explore here can be seen as a form of probabilistic cue integration in which one of
the cues is a language-specific category.

The category adjustment model has been used to account for category effects in various
domains, including spatial location [18, 26], object size [19, 27], and vowel perception [28].
The category adjustment model also bears similarities to other theoretical accounts of the
Sapir-Whorf hypothesis that emphasize the importance of verbal codes [7, 8], and the interplay
of such codes with perceptual representations [29–31]. Prior research has linked such category
effects to probabilistic inference, following the work of Huttenlocher and colleagues [18, 19].
Roberson and colleagues [32] invoked the category adjustment model as a possible explanation
for categorical perception of facial expressions, but did not explore a formal computational
model; Goldstone [33] similarly referenced the category adjustment model with respect to cate-
gory effects in the color domain. Persaud and Hemmer [21, 34] explored bias in memory for
color, and compared empirically obtained memory bias patterns from English speakers with
results predicted by a formally specified category adjustment model, but did not link those
results to the debate over the Sapir-Whorf hypothesis, and did not manipulate uncertainty.
More recently, a subsequent paper by the same authors and colleagues [35] explored category-
induced bias in speakers of another language, Tsimané, and did situate those results with
respect to the Sapir-Whorf hypothesis, but again did not manipulate uncertainty. Most
recently, Bae et al. [20] extensively documented bias in color memory in English speakers,
modeled those results with a category-adjustment computational model, and did manipulate
uncertainty—but did not explore these ideas relative to the Sapir-Whorf hypothesis, or to data
from different languages.

In what follows, we first present data and computational simulations that support the recent
finding that color memory in English speakers is well-predicted by a category adjustment
model, with the strength of category effects modulated by uncertainty. We then show, to our
knowledge for the first time, that a category adjustment model accounts for influential existing
cross-language data on color that support the Sapir-Whorf hypothesis.

Analyses
In this section we provide general descriptions of our analyses and results. Full details are sup-
plied in the section on Materials and Methods.

The Sapir-Whorf Hypothesis and Probabilistic Inference: Evidence from the Domain of Color
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Study 1: Color reconstruction in English speakers
Our first study tests the core assumptions of the category adjustment model in English speak-
ers. In doing so, it probes questions that were pursued by two studies that appeared recently,
after this work had begun. Persaud and Hemmer [21] and Bae et al. [20] both showed that
English speakers’memory for a color tends to be biased toward the category prototype of the
corresponding English color term, in line with a category adjustment model. Bae et al. [20] also
showed that the amount of such bias increases when subjects must retain the stimulus in mem-
ory during a delay period, compared to when there is no such delay, as predicted by the princi-
ples of the category adjustment model. In our first study, we consider new evidence from
English speakers that tests these questions, prior to considering speakers of different languages
in our following studies.

English-speaking participants viewed a set of hues that varied in small steps from dark yel-
low to purple, with most hues corresponding to some variety of either green or blue. We col-
lected two kinds of data from these participants: bias data and naming data. Bias data were
based on participants’ non-linguistic reconstruction of particular colors seen. Specifically, for
each hue seen, participants recreated that hue by selecting a color from a color wheel, either
while the target was still visible (Fig 3A: simultaneous condition), or from memory after a short
delay (Fig 3B: delayed condition). We refer to the resulting data as bias data, because we are
interested in the extent to which participants’ reconstructions of the stimulus color are biased
away from the original target stimulus. Afterwards, the same participants indicated how good
an example of English green (as in Fig 3C) and how good an example of English blue each hue
was. We refer to these linguistic data as naming data.

Fig 4 shows both naming and bias data as a function of target hue. The top panel of the fig-
ure shows the naming data and also shows Gaussian functions corresponding to the English
color terms green and blue that we fitted to the naming data. Bias data were collected for only a
subset of the hues for which naming data were collected, and the shaded region in the top
panel of Fig 4 shows that subset, relative to the full range of hues for naming data. We collected
bias data only in this smaller range because we were interested specifically in bias induced by
the two color terms blue and green, and colors outside the shaded region seemed to us to clearly
show some influence of neighboring categories such as yellow and purple. The bottom panel of
the figure shows the bias data, plotted relative to the prototypes (means) of the fitted Gaussian
functions for green and blue. It can be seen that reconstruction bias appears to be stronger in
the delayed than in the simultaneous condition, as predicted, and that—especially in the
delayed condition—there is an inflection in the bias pattern between the two category proto-
types, suggesting that bias may reflect the influence of each of the two categories. The smaller
shaded region in this bottom panel denotes the subset of these hues that we subsequently ana-
lyzed statistically, and to which we fit models. We reduced the range of considered hues slightly
further at this stage, to ensure that the range was well-centered with respect to the two relevant
category prototypes, for green and blue, as determined by the naming data.

The absolute values (magnitudes) of the bias were analyzed using a 2 (condition: simulta-
neous vs. delayed) × 15 (hues) repeated measures analysis of variance. This analysis revealed
significantly greater bias magnitude in the delayed than in the simultaneous condition. It also
revealed that bias magnitude differed significantly as a function of hue, as well as a significant
interaction between the factors of hue and condition. The blue stars in Fig 4 denote hues for
which the difference in bias magnitude between the simultaneous and delayed conditions
reached significance. The finding of greater bias magnitude in the delayed than in the simulta-
neous condition is consistent with the proposal that uncertainty is an important mediating fac-
tor in such category effects, as argued by Bae et al. [20]. It also suggests that some documented
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failures to find such category effects could in principle be attributable to high certainty, a possi-
bility that can be explored by manipulating uncertainty.

We wished to test in a more targeted fashion to what extent these data are consistent with a
category adjustment model in which a color is reconstructed based in part on English named
color categories. To that end, we compared the performance of four models against these data;
only one of these models considered both of the relevant English color categories, green and
blue. As in Fig 1, each model contains a fine-grained but inexact representation of the perceived
stimulus, and (for most models) a representation of one or more English color categories. Each
model predicts the reconstruction of the target stimulus from its fine-grained representation of
the target together with any category information. Category information in the model is speci-
fied by the naming data. Each model has a single free parameter, corresponding to the uncer-
tainty of the fine-grained representation; this parameter is fit to bias data.

• The null model is a baseline model that predicts hue reconstruction based only on the fine-
grained representation of the stimulus, with no category component.

Fig 3. Screenshots of example trials illustrating (A) simultaneous reconstruction, (B) delayed reconstruction, and (C) green goodness rating.

doi:10.1371/journal.pone.0158725.g003
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Fig 4. Naming and bias data, Study 1. In both top and bottom panels, the horizontal axis denotes target hue, ranging from
yellow on the left to purple on the right. Top panel (naming data): The solid green and blue curves show, for each target hue, the
average goodness rating for English green and blue respectively, as a proportion of the maximum rating possible. The dashed
green and blue curves show Gaussian functions fitted to the naming goodness data. The dotted vertical lines marked at the
bottom with green and blue squares denote the prototypes for green and blue, determined as the means of the green and blue
fitted Gaussian functions, respectively. The shaded region in the top panel shows the portion of the spectrum for which bias data
were collected. Bottom panel (bias data): Solid curves denote, for each target hue, the average reconstruction bias for that hue,
such that positive values denote reconstruction bias toward the purple (here, right) end of the spectrum, and negative values
denote reconstruction bias toward the yellow (here, left) end of the spectrum. Units for the vertical axis are the same as for the
horizontal axis, which is normalized to length 1.0. The black and red curves show bias under simultaneous and delayed
response, respectively. Blue stars at the top of the bottom panel mark hues for which there was a significant difference in the
magnitude of bias between simultaneous and delayed conditions. The shaded region in the bottom panel shows the portion of
the data that was analyzed statistically, and to which models were fit. In both panels, error bars represent standard error of the
mean.

doi:10.1371/journal.pone.0158725.g004
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• The 1-category (green) model predicts hue reconstruction based on the fine-grained represen-
tation of the stimulus, combined with a representation of only the green category, derived
from the green naming data.

• The 1-category (blue) model predicts hue reconstruction based on the fine-grained represen-
tation of the stimulus, combined with a representation of only the blue category, derived
from the blue naming data.

• The 2-category model predicts hue reconstruction based on the fine-grained representation
of the stimulus, combined with representations of both the green and blue categories.

If reproduction bias reflects probabilistic inference from a fine-grained representation of the
stimulus itself, together with any relevant category, we would expect the 2-category model to
outperform the others. The other models have access either to no category information at all
(null model), or to category information for only one of the two relevant color categories (only
one of green and blue). The 2-category model in contrast combines fine-grained stimulus infor-
mation with both of the relevant categories (green and blue); this model thus corresponds most
closely to a full category adjustment model.

Fig 5 redisplays the data from simultaneous and delayed reconstruction, this time with
model fits overlaid. The panels in the left column show data from simultaneous reconstruction,
fit by each of the four models, and the panels in the right column analogously show data and
model fits from delayed reconstruction. Visually, it appears that in the case of delayed recon-
struction, the 2-category model fits the data at least qualitatively better than competing models:
it shows an inflection in bias as the empirical data do, although not as strongly. For simulta-
neous reconstruction, the 2-category model fit is also reasonable but visually not as clearly
superior to the others (especially the null model) as in the delayed condition.

Table 1 reports quantitative results of these model fits. The best fit is provided by the 2-cate-
gory model, in both the simultaneous and delayed conditions, whether assessed by log likeli-
hood (LL) or by mean squared errror (MSE). In line with earlier studies [20, 21], these findings
demonstrate that a category adjustment model that assumes stimulus reconstruction is gov-
erned by relevant English color terms provides a reasonable fit to data on color reconstruction
by English speakers. The category adjustment model fits well both when the category bias is rel-
atively slight (simultaneous condition), and when the bias is stronger (delayed condition).

Study 2: Color discrimination across languages
The study above examined the categories of just one language, English, whereas the Sapir-
Whorf hypothesis concerns cross-language differences in categorization, and their effect on
cognition and perception. Empirical work concerning this hypothesis has not specifically
emphasized bias in reconstruction, but there is a substantial amount of cross-language data of
other sorts against which the category adjustment model can be assessed. One method that has
been extensively used to explore the Sapir-Whorf hypothesis in the domain of color is a two-
alternative forced choice (2AFC) task. In such a task, participants first are briefly shown a tar-
get color, and then shortly afterward are shown that same target color together with a different
distractor color, and are asked to indicate which was the color originally seen. A general finding
from such studies [8–10] is that participants exhibit enhanced discrimination for pairs of colors
that would be named differently in their native language. For example, in such a 2AFC task,
speakers of English show enhanced discrimination for colors from the different English catego-
ries green and blue, compared with colors from the same category (either both green or both
blue) [8]. In contrast, speakers of the Berinmo language, which has named color categories that
differ from those of English, show enhanced discrimination across Berinmo category
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boundaries, and not across those of English [9]. Thus color discrimination in this task is
enhanced at the boundaries of native language categories, suggesting an effect of those native
language categories on the ability to discriminate colors from memory.

Considered informally, this qualitative pattern of results appears to be consistent with the
category adjustment model, as suggested above in Fig 2. We wished to determine whether such
a model would also provide a good quantitative account of such results, when assessed using
the specific color stimuli and native-language naming patterns considered in the empirical
studies just referenced.

We considered cross-language results from two previous studies by Debi Roberson and col-
leagues, one that compared color memory in speakers of English and Berinmo, a language of
Papua New Guinea [9], and another that explored color memory in speakers of Himba, a lan-
guage of Namibia [10]. Berinmo and Himba each have five basic color terms, in contrast with
eleven in English. The Berinmo and Himba color category systems are similar to each other in
broad outline, but nonetheless differ noticeably. Following these two previous studies, we con-
sidered the following pairs of categories in these three languages:

1. the English categories green and blue,

2. the Berinmo categories wor (covering roughly yellow, orange, and brown), and nol (cover-
ing roughly green, blue, and purple), and

3. the Himba categories dumbu (covering roughly yellow and beige) and burou (covering
roughly green, blue, and purple).

These three pairs of categories are illustrated in Fig 6, using naming data from Roberson et al.
(2000) [9] and Roberson et al. (2005) [10]. It can be seen that the English green-blue distinction
is quite different from the Berinmo wor-nol and the Himba dumbu-burou distinctions, which
are similar but not identical to each other. The shaded regions in this figure indicate specific
colors that were probed in discrimination tasks. The shaded (probed) region that straddles a
category boundary in Berinmo and Himba falls entirely within the English category green, and
the shaded (probed) region that straddles a category boundary in English falls entirely within
the Berinmo category nol and the Himba category burou, according to naming data in Fig 1 of
Roberson et al. (2005) [10]. The empirical discrimination data in Fig 7 are based on those

Fig 5. Bias in color reconstruction, andmodel fits, Study 1. Left column: Bias from simultaneous reconstruction, fit by each of the four models. The
empirical data (black lines with error bars) in these four panels are the same, and only the model fits (red lines) differ. Within each panel, the horizontal axis
denotes target hue, and the vertical axis denotes reconstruction bias. The green and blue prototypes are indicated as vertical lines with green and blue
squares at the bottom. Right column: delayed reconstruction, displayed analogously.

doi:10.1371/journal.pone.0158725.g005

Table 1. Model fits to reconstruction data, Study 1. LL = log likelihood (higher is better). MSE = mean squared error (lower is better). The best value in
each row is shown in bold.

Measure Null 1-cat. (G) 1-cat. (B) 2-cat.

Simultaneous LL 2530 2290 2510 2590

MSE 0.00011 0.00057 0.00015 0.00008

Delayed LL 1860 1650 1900 1980

MSE 0.00099 0.00160 0.00061 0.00042

doi:10.1371/journal.pone.0158725.t001
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probed colors [9, 10], and show that in general, speakers of a language tend to exhibit greater
discrimination for pairs of colors that cross a category boundary in their native language, con-
sistent with the Sapir-Whorf hypothesis.

We sought to determine whether the 2-category model explored above could account for
these data. To that end, for each language, we created a version of the 2-category model based
on the naming data for that language. Thus, we created an English model in which the two cat-
egories were based on empirical naming data for green and blue, a Berinmo model in which the
two categories were based on empirical naming data for wor and nol, and a Himba model in
which the two categories were based on empirical naming data for dumbu and burou. The
black curves in Fig 6 show the probability of assigning a given hue to each of the two native-
language categories, according to the category component of a 2-category model fit to each lan-
guage’s naming data. Given this category information, we simulated color reconstruction from
memory for the specific colors considered in the empirical studies [9, 10] (the colors in the
shaded regions in Fig 6). We did so separately for the cases of English, Berinmo, and Himba, in
each case fitting a model based on naming data for a given language to discrimination data
from speakers of that language. As in Study 1, we fit the model parameter corresponding to the

Fig 6. Color naming across languages, Study 2. The English categories green and blue (top panel), the Berinmo categorieswor and nol (middle panel),
and the Himba categories dumbu and burou (bottom panel), plotted against a spectrum of hues that ranges from dark yellow at the left, through green, to blue
at the right. Colored squares mark prototypes: the shared prototype for Berinmowor and Himba dumbu, and the prototypes for English green and blue; the
color of each square approximates the color of the corresponding prototype. For each language, the dotted-and-dashed vertical lines denote the prototypes
for the two categories from that language, and the dashed vertical line denotes the empirical boundary between these two categories. Black curves show the
probability of assigning a given hue to each of the two native-language categories, according to the category component of a 2-category model fit to each
language’s naming data. The shaded regions mark the ranges of colors probed in discrimination tasks; these two regions are centered at the English green-
blue boundary and the Berinmowor-nol boundary. Data are from Roberson et al. (2000) [9] and Roberson et al. (2005) [10].

doi:10.1371/journal.pone.0158725.g006
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uncertainty of fine-grained perceptual representation to the empirical non-linguistic (here dis-
crimination) data, and we used a single value for this parameter across all three language mod-
els. The model results are shown in Fig 7, beside the empirical data to which they were fit. The
models provide a reasonable match to the observed cross-language differences in discrimina-
tion. Specifically, the stimulus pairs for which empirical performance is best are those that
cross a native-language boundary—and these are stimulus pairs for which the corresponding
model response is strongest.

Although not shown in the figure, we also conducted a followup analysis to test whether the
quality of these fits was attributable merely to model flexibility, or to a genuine fit between a
language’s category system and patterns of discrimination from speakers of that language. We
did this by switching which language’s model was fit to which language’s discrimination data.
Specifically, we fit the model based on Berinmo naming to the discrimination data from
English speakers (and vice versa), and fit the model based on Himba naming to the discrimina-
tion data from English speakers (and vice versa), again adjusting the model parameter corre-
sponding to the uncertainty of the fine-grained perceptual representation to the empirical
discrimination data. The results are summarized in Table 2. It can be seen that the discrimina-
tion data are fit better by native-language models (that is, models with a category component
originally fit to that language’s naming data) than by other-language models (that is, models
with a category component originally fit to another language’s naming data). These results sug-
gest that cross-language differences in discrimination may result from category-induced recon-
struction bias under uncertainty, guided by native-language categories.

Study 3: Within-category effects
Although many studies of categorical perception focus on pairs of stimuli that cross category
boundaries, there is also evidence for category effects within categories. In a 2AFC study of cat-
egorical perception of facial expressions, Roberson and colleagues [32] found the behavioral
signature of categorical perception (or more precisely in this case, categorical memory):

Fig 7. Color discrimination across languages, Study 2. Top panels: Discrimination frommemory by Berinmo and English speakers for pairs of colors
across and within English and Berinmo color category boundaries. Empirical data are from Table 11 of Roberson et al. (2000:392). Empirical values show
mean proportion correct 2AFCmemory judgments, and error bars show standard error. Model values showmeanmodel proportion correct 2AFCmemory
judgments after simulated reconstruction with native-language categories. Model results are range-matched to the corresponding empirical values, such
that the minimum and maximummodel values match the minimum and maximummean values in the corresponding empirical dataset, and other model
values are linearly interpolated. Bottom panels: Discrimination frommemory by Himba and English speakers for pairs of colors across and within English
and Himba color category boundaries, compared with model results based on native-language categories. Empirical data are from Table 6 of Roberson
et al. (2005:400); no error bars are shown because standard error was not reported in that table.

doi:10.1371/journal.pone.0158725.g007

Table 2. Model fits to cross-language discrimination data, Study 2, reported in mean squared error
(lower is better). The best value in each row is shown in bold. Data are fit better by native-language models
than by other-language models.

Berinmo-English comparison

Berinmo model English model

Berinmo discrimination data 0.0017 0.0080

English discrimination data 0.0019 0.0006

Himba-English comparison

Himba model English model

Himba discrimination data 0.0022 0.0039

English discrimination data 0.0029 0.0008

doi:10.1371/journal.pone.0158725.t002
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superior discrimination for cross-category than for within-category pairs of stimuli. But in
addition, they found an interesting category effect on within-category pairs, dependent on
order of presentation. For each within-category pair they considered, one stimulus of the pair
was always closer to the category prototype (the “good exemplar”) than the other (the “poor
exemplar”). They found that 2AFC performance on within-category pairs was better when the
target was the good exemplar (and the distractor was therefore the poor exemplar) than when
the target was the poor exemplar (and the distractor was therefore the good exemplar)—even
though the same stimuli were involved in the two cases. Moreover, performance in the former
(good exemplar) case did not differ significantly from cross-category performance. Hanley and
Roberson [36] subsequently reanalyzed data from a number of earlier studies that had used
2AFC tasks to explore cross-language differences in color naming and cognition, including
those reviewed and modeled in the previous section. Across studies and across domains,
including color, they found the same asymmetrical within-category effect originally docu-
mented for facial expressions.

This within-category pattern may be naturally explained in category-adjustment terms, as
shown in Fig 8, and as argued by Roberson and colleagues [32]. The central idea is that because
the target is held in memory, it is subject to bias toward the prototype in memory, making dis-
crimination of target from distractor either easier or harder depending on which of the two sti-
muli is the target. Although this connection with the category adjustment model has been
made in the literature in general conceptual terms [32], followup studies have been theoreti-
cally focused elsewhere [31, 36], and the idea has not to our knowledge been tested computa-
tionally using the specific stimuli and naming patterns involved in the empirical studies. We
sought to do so.

The empirical data in Fig 9 illustrate the within-category effect with published results on
color discrimination by speakers of English, Berinmo, and Himba. In attempting to account for
these data, we considered again the English, Berinmo, and Himba variants of the 2-category
model first used in Study 2, and also retained from that study the parameter value correspond-
ing to the uncertainty of the fine-grained perceptual representation, in the case of native-lan-
guage models. We simulated reconstruction from memory of the specific colors examined in
Study 2. Following the empirical analyses, this time we disaggregated the within-category stim-
ulus pairs into those in which the target was a good exemplar of the category (i.e. the target was
closer to the prototype than the distractor was), vs. those in which the target was a poor exem-
plar of the category (i.e. the target was farther from the prototype than the distractor was). The
model results are shown in Fig 9, and match the empirical data reasonably well, supporting the
informal in-principle argument of Fig 8 with a more detailed quantitative analysis.

Conclusions
We have argued that the debate over the Sapir-Whorf hypothesis may be clarified by viewing
that hypothesis in terms of probabilistic inference. To that end, we have presented a probabilis-
tic model of color memory, building on proposals in the literature. The model assumes both a
universal color space and language-specific categorical partitionings of that space, and infers
the originally perceived color from these two sources of evidence. The structure of this model
maps naturally onto a prominent proposal in the literature that has to our knowledge not pre-
viously been formalized in these terms. In a classic early study of the effect of language on color
cognition, Kay and Kempton [7] interpret Whorf [2] as follows:

Whorf [. . .] suggests that he conceives of experience as having two tiers: one, a kind of rock
bottom, inescapable seeing-things-as-they-are (or at least as human beings cannot help but
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see them), and a second, in which [the specific structures of a given language] cause us to
classify things in ways that could be otherwise (and are otherwise for speakers of a different
language).

Kay and Kempton argue that color cognition involves an interaction between these two
tiers. The existence of a universal groundwork for color cognition helps to explain why there
are constraints on color naming systems across languages [3–5, 37]. At the same time, Kay and
Kempton acknowledge a role for the language-specific tier in cognition, such that “there do
appear to be incursions of linguistic categorization into apparently nonlinguistic processes of
thinking” (p. 77). These two tiers map naturally onto the universal and language-specific com-
ponents of the model we have explored here. This structure offers a straightforward way to
think about effects of language on cognition while retaining the idea of a universal foundation
underpinning human perception and cognition. Thus, this general approach, and our model as
an instance of it, offer a possible resolution of one source of controversy surrounding the Sapir-
Whorf hypothesis: taking that hypothesis seriously need not entail a wholesale rejection of
important universal components of human cognition.

Fig 8. Within-category bias, dependent on presentation order. The category adjustment model predicts:
(top panel, good exemplar) easy within-category discrimination in a 2AFC task when the initially-presented
target t is closer to the prototype than the distractor d is; (bottom panel, poor exemplar) difficult within-
category discrimination with the same two stimuli when the initially-presented target t is farther from the
prototype than the distractor d is. Category is shown as a distribution in blue; stimuli are shown as vertical
black lines marked t and d; reconstruction bias patterns are shown as arrows.

doi:10.1371/journal.pone.0158725.g008
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The approach proposed here also has the potential to resolve another source of controversy
surrounding the Sapir-Whorf hypothesis: that some findings taken to support it do not repli-
cate reliably (e.g. in the case of color: [15–17]). Framing the issue in terms of probabilistic infer-
ence touches this question by highlighting the theoretically central role of uncertainty, as in
models of probabilistic cue integration [24]. We have seen stronger category-induced bias in
color memory under conditions of greater delay and presumably therefore greater uncertainty
(Study 1, and [20]). This suggests that in the inverse case of high certainty about the stimulus,
any category effect could in principle be so small as to be empirically undetectable, a possibility
that can be pursued by systematically manipulating uncertainty. Thus, the account advanced
here casts the Sapir-Whorf hypothesis in formal terms that suggest targeted and quantitative
followup tests. A related theoretical advantage of uncertainty is that it highlights an important
level of generality: uncertainty could result from memory, as explored here, but it could also
result from noise or ambiguity in perception itself, and on the view advanced here, the result
should be the same.

The model we have proposed does not cover all aspects of language effects on color cogni-
tion. For example, there are documented priming effects [31] which do not appear to flow as

Fig 9. Within-category color discrimination across languages, Study 3. Across: stimulus pair crosses the native-language boundary; GE: within-
category pair, target is the good exemplar; PE: within-category pair, target is the poor exemplar. Empirical data are from Figs 2 (English: 10-second retention
interval), 3 (Berinmo), and 4 (Himba) of Hanley and Roberson [36]. Empirical values showmean proportion correct 2AFCmemory judgments, and error bars
show standard error. Model values showmeanmodel proportion correct 2AFCmemory judgments after simulated reconstruction using native-language
categories, range-matched as in Fig 7. English model compared with English data: 0.00002 MSE; Berinmomodel compared with Berinmo data: 0.00055
MSE; Himba model compared with Himba data: 0.00087 MSE.

doi:10.1371/journal.pone.0158725.g009
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naturally from this account as do the other effects we have explored above. However, the
model does bring together disparate bodies of data in a simple framework, and links them to
independent principles of probabilistic inference. Future research can usefully probe the gener-
ality and the limitations of the ideas we have explored here.

Materials and Methods
Code and data supporting the analyses reported here are available at https://github.com/
yangxuch/probwhorfcolor.git.

Models
The basic model we consider is shown in Fig 10, which presents in graphical form the genera-
tive process behind Fig 1 above. Our model follows in general outline that of Bae et al. [20], but
the formalization of inference within this structure more closely follows Feldman et al.’s [28]
model of category effects in vowel perception. In our model, the perception of a stimulus S = s
produces a fine-grained memoryM, and a categorical code c. We wish to obtain a reconstruc-
tion ŝ of the original stimulus S = s, by combining evidence from the two internal representa-
tionsM and c that s has produced. That reconstruction is derived as follows:

pðSjM; cÞ / pðMjS; cÞpðSjcÞ ½Bayes0 rule� ð1Þ

/ pðMjSÞpðSjcÞ ½because M is independent of c given S� ð2Þ
Because hue is a circular dimension, the components p(M|S) and p(S|c) could be modeled
using circular normal or von Mises distributions, as was done by Bae et al. [20]. However each
of our studies treats only a restricted subsection of the full hue circle, and for that reason we
instead model these representations using normal distributions.

p(M|S) represents the fine-grained memory traceM of the original stimulus S = s. We
model this as a normal distribution with mean μm at the location of the original stimulus s, and

Fig 10. Model. The perception of stimulus S = s produces a fine-grained memoryM, and a categorical code c
specifying the category in which s fell. We wish to reconstruct the original stimulus S = s, givenM and c.

doi:10.1371/journal.pone.0158725.g010
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with uncertainty captured by variance s2
m:

pðMjSÞ ¼ N ðM; mm; s
2
mÞ ð3Þ

This is an unbiased representation of the original stimulus s because μm = s.
p(S|c) captures the information about the location of stimulus S that is given by the categori-

cal code c. We again model this as a normal distribution, this time centered at the prototype μc
of category c, with variance s2

c :

pðSjcÞ ¼ N ðS; mc; s
2
c Þ ð4Þ

This assumes that there is a single categorical code c, and we use this assumption in some of
our model variants below. However in other cases we will capture the fact that more than one
category may be applicable to a stimulus. In such cases we assume that the perceiver knows, for
each category c, the applicability π(c) of that category for the observed stimulus s. We model
this as:

pðcÞ ¼ pðcjsÞ / pðS ¼ sjcÞpðcÞ ð5Þ

where p(S = s|c) is given by Eq (4) above, and p(c) is assumed to be uniform.
We consider three variants of this basic model, described below in order of increasing com-

plexity: the nullmodel, the 1-categorymodel, and the 2-categorymodel. For each model, we
take the predicted reconstruction ŝ of a given stimulus S = s to be the expected value of the pos-
terior distribution:

ŝ ¼ E½SjM; c� ð6Þ

Null model. The null model assumes that reconstruction is based only on the fine-grained
memory, with no category influence. This model is derived from Eq (2) by assuming that the
memory component p(M|S) is as defined above, and the category component p(S|c) is uniform,
yielding:

pðSjM;�Þ / N ðM; mm; s
2
mÞ ð7Þ

The predicted reconstruction for this model is given by the expected value of this distribution,
namely:

E½SjM;�� ¼ mm ð8Þ

where we have assumed μm = s, the originally observed stimulus. This model predicts no cate-
gory-induced bias: the reconstruction of the stimulus S = s is simply the value of the stimulus s
itself.

1-category model. The 1-category model assumes that reconstruction is based both on
fine-grained memory and on information from a single category, e.g. English green. This
model is derived from Eq (2) by assuming that both the memory component p(M|S) and the
category component p(S|c) are as defined above, yielding:

pðSjM; cÞ / N ðM; mm; s
2
mÞ N ðS; mc; s

2
c Þ ð9Þ

The predicted reconstruction for this model is given by the expected value of this distribution,
namely:

E½SjM; c� ¼ s2
c

s2
c þ s2

m

mm þ s2
m

s2
c þ s2

m

mc ð10Þ
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where we have assumed μm = s, the originally observed stimulus. This equation parallels Eq (7)
of Feldman et al. [28]. This model produces a reconstruction that is a weighted average of the
original stimulus value s and the category prototype μc, with weights determined by the relative
certainty of each of the two sources of information. The same weighted average is also central
to Ernst and Banks’ [24] study of cue integration from visual and haptic modalities. That study
was based on the same principles we invoke here, and our model—like that of Feldman et al.—
can be viewed as a probabilistic cue integration model in which one of the two cues being inte-
grated is a category, rather than a cue from a different modality.

2-category model. The 2-category model is similar to the 1-category model, but instead of
basing its reconstruction on a single category c, it bases its reconstruction on two categories c1
and c2 (e.g. English green and blue). It does so by averaging together the reconstruction pro-
vided by the 1-category model for c1 and the reconstruction provided by the 1-category model
for c2, weighted by the applicability π(c) of each category c to the stimulus:

pðSjMÞ ¼
X

c2fc1 ;c2g
pðSjM; cÞpðcÞ ð11Þ

Here, p(S|M, c) inside the sum is given by the 1-category model specified in Eq (9), and π(c) is
the applicability of category c to the observed stimulus s as specified above in Eq (5). Our equa-
tion here parallels Eq (9) of Feldman et al. [28] who similarly take a weighted average over
1-category models in their model of category effects in speech perception. The predicted recon-
struction for this model is given by the expected value of this distribution, namely:

E½SjM� ¼
X

c2fc1;c2g

s2
c

s2
c þ s2

m

mm þ s2
m

s2
c þ s2

m

mc

� �
pðcÞ ð12Þ

assuming as before that μm = s, the original stimulus value. This equation follows Feldman
et al. [28] Eq (10).

Fitting models to data. For each model, any category parameters μc and s2
c are first fit to

naming data. The single remaining free parameter s2
m, corresponding to the uncertainty of

fine-grained memory, is then fit to non-linguistic bias or discrimination data, with no further
adjustment of the category parameters. Although this two-step process is used in all of our
studies, it is conducted in slightly different ways across studies; we supply study-specific details
below in our presentation of each study. All model fits were done using fminsearch in
Matlab.

Study 1: Color reconstruction in English speakers
Participants. Twenty subjects participated in the experiment, having been recruited at UC

Berkeley. All subjects were at least 18 years of age, native English speakers, and reported nor-
mal or corrected-to-normal vision, and no colorblindness. All subjects received payment or
course credit for participation.

Informed consent was obtained verbally; all subjects read an approved consent form and
verbally acknowledged their willingness to participate in the study. Verbal consent was chosen
because the primary risk to subjects in this study was for their names to be associated with
their response; this approach allowed us to obtain consent and collect data without the need to
store subjects’ names in any form. Once subjects acknowledged that they understood the pro-
cedures and agreed to participate by stating so to the experimenter, the experimenter recorded
their consent by assigning them a subject number, which was anonymously linked to their
data. All study procedures, including those involving consent, were overseen and approved by
the UC Berkeley Committee for the Protection of Human Subjects.
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Stimuli. Stimuli were selected by varying a set of hues centered around the blue-green
boundary, holding saturation and lightness constant. Stimuli were defined in Munsell coordi-
nate space, which is widely used in the literature we engage here (e.g. [9, 10]). All stimuli were
at lightness 6 and saturation 8. Hue varied from 5Y to 10P, in equal hue steps of 2.5. Colors
were converted to xyY coordinate space following Table I(6.6.1) of Wyszecki and Stiles (1982)
[38]. The colors were implemented in Matlab in xyY; the correspondence of these coordinate
systems in the stimulus set, as well as approximate visualizations of the stimuli, are reported in
Table 3.

We considered three progressively narrower ranges of these stimuli for different aspects of
our analyses, in an attempt to focus the analyses on a region that is well-centered relative to the
English color categories green and blue. We refer to these three progressively narrower ranges
as the full range, themedium range, and the focused range. We specify these ranges below,
together with the aspects of the analysis for which each was used.

• Full range: We collected naming data for green and blue relative to the full range, stimuli 1-
27, for a total of 27 stimuli. We fit the category components of our models to naming data
over this full range.

Table 3. Stimulus coordinates, and approximate rendering of stimuli. All stimuli were presented at light-
ness 6, saturation 8 in Munsell space.

Munsell hue xyY coordinates Stimulus

1 5Y 0.4426, 0.4588, 30.05

2 7.5Y 0.4321, 0.4719, 30.05

3 10Y 0.4201, 0.4812, 30.05

4 2.5GY 0.4006, 0.4885, 30.05

5 5GY 0.3772, 0.4880, 30.05

6 7.5GY 0.3418, 0.4768, 30.05

7 10GY 0.3116, 0.4563, 30.05

8 2.5G 0.2799, 0.4239, 30.05

9 5G 0.2612, 0.3990, 30.05

10 7.5G 0.2510, 0.3829, 30.05

11 10G 0.2420, 0.3679, 30.05

12 2.5BG 0.2332, 0.3522, 30.05

13 5BG 0.2236, 0.3311, 30.05

14 7.5BG 0.2171, 0.3138, 30.05

15 10BG 0.2116, 0.2950, 30.05

16 2.5B 0.2080, 0.2789, 30.05

17 5B 0.2088, 0.2635, 30.05

18 7.5B 0.2132, 0.2537, 30.05

19 10B 0.2189, 0.2468, 30.05

20 2.5PB 0.2274, 0.2406, 30.05

21 5PB 0.2360, 0.2365, 30.05

22 7.5PB 0.2505, 0.2347, 30.05

23 10PB 0.2637, 0.2352, 30.05

24 2.5P 0.2770, 0.2372, 30.05

25 5P 0.2905, 0.2421, 30.05

26 7.5P 0.3099, 0.2502, 30.05

27 10P 0.3259, 0.2584, 30.05

doi:10.1371/journal.pone.0158725.t003
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• Medium range: We collected bias data for a subset of the full range, namely the medium
range, stimuli 5-23, for a total of 19 stimuli. We considered this subset because we were inter-
ested in bias induced by the English color terms green and blue, and we had the impression,
prior to collecting naming or bias data, that colors outside this medium range had some sub-
stantial element of the neighboring categories yellow and purple.

• Focused range: Once we had naming data, we narrowed the range further based on those
data, to the focused range, stimuli 5-19, for a total of 15 stimuli. The focused range extends
between the (now empirically assessed) prototypes for green and blue, and also includes three
of our stimulus hues on either side of these prototypes, yielding a range well-centered relative
to those prototypes, as can be seen in the bottom panel of Fig 4 above. We considered this
range in our statistical analyses, and in our modeling of bias patterns.

Experimental procedure. The experiment consisted of four blocks. The first two blocks
were reconstruction (bias) tasks: one simultaneous block and one delay block. In the simulta-
neous block (Fig 3A), the subject was shown a stimulus color as a colored square (labeled as
“Original” in the figure), and was asked to recreate that color in a second colored square
(labeled as “Target” in the figure) as accurately as possible by selecting a hue from a color
wheel. The (“Original”) stimulus color remained on screen while the subject selected a response
from the color wheel; navigation of the color wheel would change the color of the response
(“Target”) square. The stimulus square and response square each covered 4.5 degrees of visual
angle, and the color wheel covered 11.1 degrees of visual angle. Target colors were drawn from
the medium range of stimuli (stimuli 5—23 of Table 3). The color wheel was constructed based
on the full range of stimuli (stimuli 1—27 of Table 3), supplemented by interpolating 25 points
evenly in xyY coordinates between each neighboring pair of the 27 stimuli of the full range, to
create a finely discretized continuum from yellow to purple, with 677 possible responses. Each
of the 19 target colors of the medium range was presented five times per block in random
order, for a total of 95 trials per block. The delay block (Fig 3B) was similar to the simultaneous
block but with the difference that the stimulus color was shown for 500 milliseconds then dis-
appeared, then a fixation cross was shown for 1000 milliseconds, after which the subject was
asked to reconstruct the target color from memory, again using the color wheel to change the
color of the response square. The one colored square shown in the final frame of Fig 3B is the
response square that changed color under participant control. The order of the simultaneous
block and delay block were counterbalanced by subject. Trials were presented with a 500 milli-
second inter-trial interval.

Several steps were taken to ensure that responses made on the color wheel during the recon-
struction blocks were not influenced by bias towards a particular spatial position. The position
of the color wheel was randomly rotated up to 180 degrees from trial to trial. The starting posi-
tion of the cursor was likewise randomly generated for each new trial. Finally, the extent of the
spectrum was jittered one or two stimuli (2.5 or 5 hue steps) from trial to trial, which had the
effect of shifting the spectrum slightly in the yellow or the purple direction from trial to trial.
This was done to ensure that the blue-green boundary would not fall at a consistent distance
from the spectrum endpoints on each trial.

The second two blocks were naming tasks. In each, subjects were shown each of the 27 sti-
muli of the full range five times in random order, for a total of 135 trials per block. On each
trial, subjects were asked to rate how good an example of a given color name each stimulus
was. In one block, the color name was green, in the other, the color name was blue; order of
blocks was counterbalanced by subject. To respond, subjects positioned a slider bar with end-
points “Not at all [green/blue]” and “Perfectly [green/blue]” to the desired position matching
their judgment of each stimulus, as shown above in Fig 3C. Responses in the naming blocks
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were self-paced. Naming blocks always followed reconstruction blocks, to ensure that repeated
exposure to the color terms green and blue did not bias responses during reconstruction.

The experiment was presented in Matlab version 7.11.0 (R2010b) using
Psychtoolbox (version 3) [39–41]. The experiment was conducted in a dark, sound-attenuated
booth on an LCD monitor that supported 24-bit color. The monitor had been characterized
using a Minolta CS100 colorimeter. A chin rest was used to ensure that each subject viewed the
screen from a constant position; when in position, the base of the subject’s chin was situated 30
cm from the screen.

As part of debriefing after testing was complete, each subject was asked to report any strate-
gies they used during the delay block to help them remember the target color. Summaries of
each response, as reported by the experimenter, are listed in Table 4.

Color spectrum. We wished to consider our stimuli along a 1-dimensional spectrum such
that distance between two colors on that spectrum approximates the perceptual difference
between those colors. To this end, we first converted our stimuli to CIELAB color space. CIE-
LAB is a 3-dimensional color space designed “in an attempt to provide coordinates for colored
stimuli so that the distance between the coordinates of any two stimuli is predictive of the per-
ceived color difference between them” (p. 202 of [42]). The conversion to CIELAB was done
according to the equations on pp. 167-168 of Wyszecki and Stiles (1982) [38], assuming 2
degree observer and D65 illuminant. For each pair of neighboring colors in the set of 677 colors
of our color wheel, we measured the distance (ΔE) betwen these two colors in CIELAB space.
We then arranged all colors along a 1-dimensional spectrum that was scaled to length 1, such

Table 4. Debriefing responses by subject, paraphrased as they were reported to the experimenter.
When subjects gave specific examples of color terms used as memory aids, they are reported here.

Subject Debriefing: strategy during delay block

1 Used two-color words (e.g. ‘blue-green’) to help remember target.

2 Said the name of the color (e.g. ‘periwinkle’, ‘yellow-green’) during some delays.

3 Visualized color during delays.

4 Used verbal cues.

5 Used verbal cues (‘blueish’, ‘green’, etc.).

6 Used labels (e.g. ‘forest green’), but reported feeling that it did not help much.

7 Tried to relate each target to something in nature (e.g. ‘grass green’).

8 Tried to use words (e.g. ‘seafoam’, ‘forest green’, ‘mauve’, etc.).

9 For first 10 trials, used the labels ‘teal’, ‘grass green’, and ‘purple’ as bases, and modified to the
specific target (e.g. ‘greener teal’). Subject reported finding this initial system too difficult, and just
tried to picture the color in subsequent trials.

10 Associated each target with word (e.g. ‘violet’, ‘olive green’, ‘forest green’).

11 Mentally pictured target color.

12 Named color (e.g. ‘teal’, ‘turquoise’) and what “scheme” (e.g. ‘orange’) it was. Sometimes used a
comparison to the previous trial (“a little more orange than previous target”, etc.).

13 Named general color (e.g. ‘blue’, ‘green’), and then pictured what shade it was.

14 Subject reported using no strategy other than mentally visualizing the color.

15 Subject reported visualizing the color and taking a mental snapshot of it.

16 Picked color that was closest to what was seen and graded degree to which it was similar (e.g.
‘lighter’, ‘darker’).

17 Mentally described target color (e.g. ‘sky blue’, ‘olive green’).

18 Used verbal descriptors for color (e.g. ‘aquamarine’, ‘olive green’).

19 Named color and gave mental description (e.g. ‘teal’).

20 No specific strategy reported.

doi:10.1371/journal.pone.0158725.t004
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that the distance between each pair of neighboring colors along that spectrum was proportional
to the CIELAB ΔE distance between them. This CIELAB-based 1-dimensional spectrum was
used for our analyses in Study 1, and an analogous spectrum for a different set of colors was
used for our analyses in Studies 2 and 3.

Statistical analysis. As a result of the experiment detailed above, we obtained bias data
from 20 participants, for each of 19 hues (the medium range), for 5 trials per hue per partici-
pant, in each of the simultaneous and delayed conditions. For analysis purposes, we restricted
attention to the focused range of stimuli (15 hues), in order to consider a region of the spec-
trum that is well-centered with respect to green and blue, as we are primarily interested in bias
that may be induced by these two categories. We wished to determine whether the magnitude
of the bias differed as a function of the simultaneous vs. delayed condition, whether the magni-
tude of the bias varied as a function of hue, and whether there was an interaction between these
two factors. To answer those questions, we conducted a 2 (condition: simultaneous vs. delayed)
× 15 (hues) repeated measures analysis of variance (ANOVA), in which the dependent mea-
sure was the absolute value of the reproduction bias (reproduced hue minus target hue), aver-
aged across trials for a given participant at a given target hue in a given condition. The
ANOVA included an error term to account for across-subject variability. We found a main
effect of condition, with greater bias magnitude in the delayed than in the simultaneous condi-
tion [F(1, 19) = 61.61, p< 0.0001], a main effect of hue [F(14, 266) = 4.565, p< 0.0001], and
an interaction of hue and condition [F(14, 266) = 3.763, p< 0.0001]. All hue calculations were
relative to the CIELAB-based spectrum detailed in the preceding section.

We then conducted paired t-tests at each of the target hues, comparing each participant’s
bias magnitude for that hue (averaged over trials) in the simultaneous condition vs. the delayed
condition. Blue asterisks at the top of Fig 4 mark hues for which the paired t-test returned
p< 0.05 when applying Bonferroni corrections for multiple comparisons.

Modeling procedure. We considered four models in accounting for color reconstruction
in English speakers: the null model, a 1-category model for which the category was green, a
1-category model for which the category was blue, and a 2-category model based on both green
and blue.

We fit these models to the data in two steps. We first fit any category parameters (the means
μc and variances s2

c for any categories c) to the naming data. We then fit the one remaining free
parameter (s2

m), which captures the uncertainty of fine-grained memory, to the bias data, with-
out further adjusting the category parameters. We specify each of these two steps below.

We fit a Gaussian function to the goodness naming data for green, and another Gaussian
function to the data for blue, using maximum likelihood estimation. The fitted Gaussian func-
tions can be seen, together with the data to which they were fit, in the top panel of Fig 4. This
process determined values for the category means μc and category variances s2

c for the two cate-
gories green and blue.

For each of the four variants of the category adjustment model outlined above (null, 1-cate-
gory green, 1-category blue, and 2-category), we retained the category parameter settings
resulting from the above fit to the naming data. We then obtained a value for the one remain-
ing free parameter s2

m, corresponding to the uncertainty of fine-grained memory, by fitting the
model to the bias data via maximum likelihood estimation, without further adjusting the cate-
gory parameters.

Study 2: Color discrimination across languages
Empirical data. The empirical data considered for this study were drawn from two

sources: the study of 2AFC color discrimination by speakers of Berinmo and English in
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Experiment 6a of Roberson et al. (2000) [9], and the study of 2AFC color discrimination by
speakers of Himba and English in Experiment 3b of Roberson et al. (2005) [10]. In both stud-
ies, two sets of color stimuli were considered, all at value (lightness) level 5, and chroma (satu-
ration) level 8. Both sets varied in hue by increments of 2.5 Munsell hue steps. The first set of
stimuli was centered at the English green-blue boundary (hue 7.5BG), and contained the fol-
lowing seven hues: 10G, 2.5BG, 5BG, 7.5BG, 10BG, 2.5B, 5B. The second set of stimuli was cen-
tered at the Berinmo wor-nol boundary (hue 5GY), and contained the following seven hues:
7.5Y, 10Y, 2.5GY, 5GY, 7.5GY, 10GY, 2.5G. Stimuli in the set that crossed an English category
boundary all fell within a single category in Berinmo (nol) and in Himba (burou), and stimuli
in the set that crossed a Berinmo category boundary also crossed a Himba category boundary
(dumbu-burou) but all fell within a single category in English (green), according to naming
data in Fig 1 of Roberson et al. (2005) [10]. Based on specifications in the original empirical
studies [9, 10], we took the pairs of stimuli probed to be those presented in Table 5.

Based on naming data in Fig 1 of Roberson et al. 2005 [10], we took the prototypes of the
relevant color terms to be:

English green prototype = 10GY

English blue prototype = 10B

Berinmo wor prototype = 5Y

Berinmo nol prototype = 5G

Himba dumbu prototype = 5Y

Himba burou prototype = 10G

Table 5. Hues for probed stimulus pairs within and across the English blue-green, Berinmowor-nol,
and Himba dumbu-burou boundaries. Any stimulus pair that includes a boundary color is considered to be
a cross-category pair. All hues are at value (lightness) level 5, and chroma (saturation) level 8. 1s denotes a
1-step pair; 2s denotes a 2-step pair.

English blue-green stimuli (boundary color = 7.5BG)

within across

5B-2.5B (1s) 7.5BG-5BG (1s)

5B-10BG (2s) 2.5B-7.5BG (2s)

5BG-2.5BG (1s) 10BG-7.5BG (1s)

5BG-10G (2s) 10BG-5BG (2s)

Berinmowor-nol stimuli (boundary color = 5GY)

within across

7.5Y-10Y (1s) 5GY-7.5GY (1s)

7.5Y-2.5GY (2s) 10Y-5GY (2s)

7.5GY-10GY (1s) 2.5GY-5GY (1s)

7.5GY-2.5G (2s) 2.5GY-7.5GY (2s)

Himba dumbu-burou stimuli (boundary color = 7.5GY)

within across

7.5Y-10Y (1s) 5GY-7.5GY (1s)

7.5Y-2.5GY (2s) 2.5GY-7.5GY (2s)

2.5GY-5GY (1s) 7.5GY-10GY (1s)

10Y-5GY (2s) 7.5GY-2.5G (2s)

doi:10.1371/journal.pone.0158725.t005
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Fig 6 above shows a spectrum of hues ranging from the Berinmo wor prototype (5Y) to the
English blue prototype (10B) in increments of 2.5 Munsell hue steps, categorized according to
each of the three languages we consider here. These Munsell hues were converted to xyY and
then to CIELAB as above, and the positions of the hues on the spectrum were adjusted so that
the distance between each two neighboring hues in the spectrum is proportional to the CIELAB
ΔE distance between them. We use this CIELAB-based spectrum for our analyses below. The
two shaded regions on each spectrum in Fig 6 denote the two target sets of stimuli identified
above.

The discrimination data we modeled were drawn from Table 11 of Roberson et al.
(2000:392) [9] and Table 6 of Roberson et al. (2005:400) [10].

Modeling procedure. We considered three variants of the 2-category model: an English
blue-greenmodel, a Berinmo wor-nolmodel, and a Himba dumbu-buroumodel. As in Study 1,
we fit each model to the data in two steps. For each language’s model, we first fit the category
component of that model to naming data from that language. Because color naming differs
across these languages, this resulted in three models with different category components. For
each model, we then retained and fixed the resulting category parameter settings, and fit the
single remaining parameter, corresponding to memory uncertainty, to discrimination data. We
detail these two steps below.

For the naming data, we modeled the probability of applying category name c to stimulus i
as:

pðcjiÞ / pðijcÞpðcÞ / f ðijcÞpðcÞ ð13Þ

where p(c) is assumed to be uniform, and f(i|c) is a non-normalized Gaussian function corre-
sponding to category c, with mean μc and variance s2

c . There were two categories c for each
model, e.g. wor and nol in the case of the Berinmo model. Category means μc were set to the
corresponding category prototypes shown above (e.g. μc for Berinmo nol corresponded to 5G),
and category variances s2

c were left as free parameters. We then adjusted these free category
variances to reproduce the empirical boundary between the two categories c1 and c2 for that
language, as follows. Sweeping from left (c1) to right (c2), we took the model’s boundary
between c1 and c2 to be the first position i on the spectrum for which p(c1|i)� p(c2|i); we refer
to this as themodel crossover point. We measured the distance in the CIELAB-based spectrum
between the model crossover point and the empirical category boundary, and adjusted the cate-
gory variances s2

c1
and s2

c2
so as to minimize that distance. This was done separately for each

language’s model. Fig 6 shows the resulting fits of category components to naming data for
each of the three languages.

We then simulated performance in the 2AFC discrimination task for each stimulus pair in
Table 5, by each model, as follows. Given a pair of stimuli, one stimulus was taken to be the tar-
get t and therefore held in memory, and the other taken to be the distractor d. We took the
reconstruction r for the target stimulus t to be the expected value of the posterior for the 2-cate-
gory model:

r ¼ E½tjM� ð14Þ

We then measured, along the hue spectrum in question, the distance dist(r, t) between the
reconstruction r and the target t, and the distance dist(r, d) between the reconstruction r and
the distractor d. We converted each of these two distances to a similarity score:

simði; jÞ ¼ exp ð�distði; jÞÞ ð15Þ
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and modeled the proportion correct choice as:

p ¼ simðr; tÞP
i2ft;dgsimðr; iÞ ð16Þ

These equations are based on Luce’s [43] (pp. 113-114) model of choice behavior. For each
pair of stimuli, each stimulus was once taken to be the target, and once taken to be the distrac-
tor, and the results averaged to yield a mean discrimination score for that pair. Scores were
then averaged across all pairs listed as within-category pairs, and separately for all pairs listed
as cross-category pairs. These scores were range-matched to the empirical data, in an attempt
to correct for other factors that could affect performance, such as familiarity with such tasks,
etc.; such external factors could in principle differ substantially across participant pools for the
three languages modeled. We measured MSE between the model output and the data so
treated, and adjusted the remaining parameter s2

m, corresponding to memory uncertainty, so as
to minimize this MSE. This entire process was conducted two times. The first time, each lan-
guage’s model was fit to that same language’s discrimination data. Then, to test whether native-
language categories allow a better fit than the categories of another language, we fit the Ber-
inmo model to the English discrimination data (and vice versa), and the Himba model to the
English discrimination data (and vice versa).

Study 3: Within-category effects
Empirical data. The empirical data considered for this study are those of Figs 2 (English

green/blue, 10 second delay), 3 (Berinmo wor/nol), and 4 (Himba dumbu/borou) of Hanley and
Roberson (2011) [36]. These data were originally published by Roberson and Davidoff (2000)
[8], Roberson et al. (2000) [9], and Roberson et al. (2005) [10], respectively. The Berinmo and
Himba stimuli and data were the same as in our Study 2, but the English stimuli and data rean-
alyzed by Hanley and Roberson (2011) [36] Fig 2 were instead drawn from Table 1 of Roberson
and Davidoff (2000) [8], reproduced here in Table 6, and used for the English condition of this
study. These stimuli for English were at lightness (value) level 4, rather than 5 as for the other
two languages. We chose to ignore this difference for modeling purposes.

Modeling procedure. All modeling procedures were identical to those of Study 2, with the
exception that GE (target = good exemplar) and PE (target = poor exemplar) cases were disag-
gregated, and analyzed separately.

Table 6. Hues for probed stimulus pairs within and across the English green-blue boundary for Study
3, from Table 1 of Roberson and Davidoff (2000). Any stimulus pair that includes a boundary color is con-
sidered to be a cross-category pair. All hues are at value (lightness) level 4, and chroma (saturation) level 8.
1s denotes a 1-step pair; 2s denotes a 2-step pair.

English green-blue stimuli (boundary color = 7.5BG)

within across

5B-2.5B (1s) 10BG-7.5BG (1s)

5B-10BG (2s) 2.5B-7.5BG (2s)

2.5BG-10G (1s) 7.5BG-5BG (1s)

5BG-10G (2s) 10BG-5BG (2s)

doi:10.1371/journal.pone.0158725.t006
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