


mathematics of Bayesian statistics: our sense of
similarity (18), representativeness (19), and ran-
domness (20); coincidences as a cue to hidden
causes (21); judgments of causal strength (22) and
evidential support (23); diagnostic and condi-
tional reasoning (24, 25); and predictions about
the future of everyday events (26).

The claim that human minds learn and rea-
son according to Bayesian principles is not a
claim that the mind can implement any Bayesian
inference. Only those inductive computations that
the mind is designed to perform well, where
biology has had time and cause to engineer ef-
fective and efficient mechanisms, are likely to

be understood in Bayesian terms. In addition
to the general cognitive abilities just mentioned,
Bayesian analyses have shed light on many spe-
cific cognitive capacities and modules that result
from rapid, reliable, unconscious processing, in-
cluding perception (27), language (28), memory
(29, 30), and sensorimotor systems (31). In contrast,
in tasks that require explicit conscious manipu-
lations of probabilities as numerical quantities—a
recent cultural invention that few people become
fluent with, and only then after sophisticated
training—judgments can be notoriously biased
away from Bayesian norms (32).

At heart, Bayes’s rule is simply a tool for
answering question 1: How does abstract knowl-
edge guide inference from incomplete data?
Abstract knowledge is encoded in a probabilistic
generative model, a kind of mental model that
describes the causal processes in the world giv-
ing rise to the learner’s observations as well as
unobserved or latent variables that support ef-
fective prediction and action if the learner can
infer their hidden state. Generative models must
be probabilistic to handle the learner’s uncertain-
ty about the true states of latent variables and
the true causal processes at work. A generative
model is abstract in two senses: It describes not
only the specific situation at hand, but also a broader
class of situations over which learning should
generalize, and it captures in parsimonious form
the essential world structure that causes learners’
observations and makes generalization possible.

Bayesian inference gives a rational framework
for updating beliefs about latent variables in gen-
erative models given observed data (33, 34).
Background knowledge is encoded through a
constrained space of hypotheses H about pos-
sible values for the latent variables, candidate
world structures that could explain the observed
data. Finer-grained knowledge comes in the “prior
probability” P(h), the learner’s degree of belief in
a specific hypothesis h prior to (or independent
of) the observations. Bayes’s rule updates priors
to “posterior probabilities” P(h|d) conditional on
the observed data d:

P(hjd) ¼
P(djh)P(h)

∑h′∈HP(djh′)P(h′)
º P(djh)P(h)

ð1Þ

The posterior probability is proportional to the
product of the prior probability and the likelihood
P(d|h), measuring how expected the data are under
hypothesis h, relative to all other hypotheses h′ inH.

To illustrate Bayes’s rule in action, suppose
we observe John coughing (d), and we consider
three hypotheses as explanations: John has h1, a
cold; h2, lung disease; or h3, heartburn. Intuitively
only h1 seems compelling. Bayes’s rule explains
why. The likelihood favors h1 and h2 over h3:
only colds and lung disease cause coughing and
thus elevate the probability of the data above
baseline. The prior, in contrast, favors h1 and h3
over h2: Colds and heartburn are much more
common than lung disease. Bayes’s rule weighs

Fig. 1. Human children learning names for object concepts routinely make strong generalizations from
just a few examples. The same processes of rapid generalization can be studied in adults learning names
for novel objects created with computer graphics. (A) Given these alien objects and three examples
(boxed in red) of “tufas” (a word in the alien language), which other objects are tufas? Almost everyone
selects just the objects boxed in gray (75). (B) Learning names for categories can be modeled as
Bayesian inference over a tree-structured domain representation (2). Objects are placed at the leaves of
the tree, and hypotheses about categories that words could label correspond to different branches.
Branches at different depths pick out hypotheses at different levels of generality (e.g., Clydesdales, draft
horses, horses, animals, or living things). Priors are defined on the basis of branch length, reflecting the
distinctiveness of categories. Likelihoods assume that examples are drawn randomly from the branch
that the word labels, favoring lower branches that cover the examples tightly; this captures the sense of
suspicious coincidence when all examples of a word cluster in the same part of the tree. Combining
priors and likelihoods yields posterior probabilities that favor generalizing across the lowest distinctive
branch that spans all the observed examples (boxed in gray).
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hypotheses according to the product of priors
and likelihoods and so yields only explanations
like h1 that score highly on both terms.

The same principles can explain how people
learn from sparse data. In concept learning, the
data might correspond to several example ob-
jects (Fig. 1) and the hypotheses to possible ex-
tensions of the concept. Why, given three examples
of different kinds of horses, would a child gen-
eralize the word “horse” to all and only horses
(h1)? Why not h2, “all horses except Clydesdales”;
h3, “all animals”; or any other rule consistent with
the data? Likelihoods favor the more specific
patterns, h1 and h2; it would be a highly suspi-
cious coincidence to draw three random exam-
ples that all fall within the smaller sets h1 or h2
if they were actually drawn from the much larger
h3 (18). The prior favors h1 and h3, because as
more coherent and distinctive categories, they
are more likely to be the referents of common
words in language (1). Only h1 scores highly
on both terms. Likewise, in causal learning, the
data could be co-occurences between events; the
hypotheses, possible causal relations linking
the events. Likelihoods favor causal links that
make the co-occurence more probable, whereas
priors favor links that fit with our background
knowledge of what kinds of events are likely to
cause which others; for example, a disease (e.g.,
cold) is more likely to cause a symptom (e.g.,
coughing) than the other way around.

The Form of Abstract Knowledge
Abstract knowledge provides essential con-
straints for learning, but in what form? This is
just question 2. For complex cognitive tasks such
as concept learning or causal reasoning, it is im-
possible to simply list every logically possible hy-
pothesis along with its prior and likelihood. Some
more sophisticated forms of knowledge repre-
sentation must underlie the probabilistic gener-
ative models needed for Bayesian cognition.

In traditional associative or connectionist ap-
proaches, statistical models of learning were de-
fined over large numerical vectors. Learning was
seen as estimating strengths in an associative mem-
ory, weights in a neural network, or parameters of
a high-dimensional nonlinear function (12, 14).
Bayesian cognitive models, in contrast, have had
most success defining probabilities over more
structured symbolic forms of knowledge repre-
sentations used in computer science and artificial
intelligence, such as graphs, grammars, predicate
logic, relational schemas, and functional programs.
Different forms of representation are used to cap-
ture people’s knowledge in different domains and
tasks and at different levels of abstraction.

In learning words and concepts from exam-
ples, the knowledge that guides both children’s
and adults’ generalizations has been well de-
scribed using probabilistic models defined over
tree-structured representations (Fig. 1B) (2, 35).
Reasoning about other biological concepts for
natural kinds (e.g., given that cows and rhinos
have protein X in their muscles, how likely is it

that horses or squirrels do?) is also well described
by Bayesian models that assume nearby objects
in the tree are likely to share properties (36). How-
ever, trees are by no means a universal represen-
tation. Inferences about other kinds of categories
or properties are best captured by using proba-
bilistic models with different forms (Fig. 2): two-
dimensional spaces or grids for reasoning about
geographic properties of cities, one-dimensional
orders for reasoning about values or abilities, or
directed networks for causally transmitted proper-
ties of species (e.g., diseases) (36).

Knowledge about causes and effects more
generally can be expressed in a directed graph-
ical model (9, 11): a graph structure where nodes
represent variables and directed edges between
nodes represent probabilistic causal links. In a
medical setting, for instance (Fig. 3A), nodes
might represent whether a patient has a cold, a
cough, a fever or other conditions, and the pres-
ence or absence of edges indicates that colds tend
to cause coughing and fever but not chest pain;
lung disease tends to cause coughing and chest
pain but not fever; and so on.

Such a causal map represents a simple kind
of intuitive theory (4), but learning causal net-
works from limited data depends on the con-
straints of more abstract knowledge. For example,
learning causal dependencies between medical
conditions is enabled by a higher-level framework
theory (37) specifying two classes of variables (or
nodes), diseases and symptoms, and the tendency
for causal relations (or graph edges) to run from
diseases to symptoms, rather than within these
classes or from symptoms to diseases (Fig. 3, A
to C). This abstract framework can be repre-
sented by using probabilistic models defined over
relational data structures such as graph schemas
(9, 38), templates for graphs based on types of
nodes, or probabilistic graph grammars (39), similar
in spirit to the probabilistic grammars for strings
that have become standard for representing lin-
guistic knowledge (28). At the most abstract lev-
el, the very concept of causality itself, in the sense
of a directed relationship that supports interven-
tion or manipulation by an external agent (40),
can be formulated as a set of logical laws express-
ing constraints on the structure of directed graphs
relating actions and observable events (Fig. 3D).

Each of these forms of knowledge makes
different kinds of prior distributions natural to
define and therefore imposes different constraints
on induction. Successful generalization depends
on getting these constraints right. Although in-
ductive constraints are often graded, it is easiest
to appreciate the effects of qualitative constraints
that simply restrict the hypotheses learners can
consider (i.e., setting priors for many logical
possible hypotheses to zero). For instance, in
learning concepts over a domain of n objects,
there are 2n subsets and hence 2n logically pos-
sible hypotheses for the extension of a novel
concept. Assuming concepts correspond to the
branches of a specific binary tree over the ob-
jects, as in Fig. 1B, restricts this space to only

n − 1 hypotheses. In learning a causal network
over 16 variables, there are roughly 1046 logical-
ly possible hypotheses (directed acyclic graphs),
but a framework theory restricting hypotheses
to bipartite disease-symptom graphs reduces this
to roughly 1023 hypotheses. Knowing which var-
iables belong to the disease and symptom classes
further restricts this to roughly 1018 networks.
The smaller the hypothesis space, the more ac-
curately a learner can be expected to generalize,
but only as long as the true structure to be learned
remains within or near (in a probabilistic sense)
the learner’s hypothesis space (10). It is no coin-
cidence then that our best accounts of people’s
mental representations often resemble simpler ver-
sions of how scientists represent the same do-
mains, such as tree structures for biological species.
A compact description that approximates how
the grain of the world actually runs offers the
most useful formof constraint on inductive learning.

The Origins of Abstract Knowledge
The need for abstract knowledge and the need
to get it right bring us to question 3: How do
learners learn what they need to know to make
learning possible? How does a child know which
tree structure is the right way to organize hypothe-
ses for word learning? At a deeper level, how can
a learner know that a given domain of entities
and concepts should be represented by using a
tree at all, as opposed to a low-dimensional space
or some other form? Or, in causal learning, how
do people come to correct framework theories
such as knowledge of abstract disease and symp-
tom classes of variables with causal links from
diseases to symptoms?

The acquisition of abstract knowledge or new
inductive constraints is primarily the province
of cognitive development (5, 7). For instance,
children learning words initially assume a flat,
mutually exclusive division of objects into name-
able clusters; only later do they discover that cat-
egories should be organized into tree-structured
hierarchies (Fig. 1B) (41). Such discoveries are also
pivotal in scientific progress: Mendeleev launched
modern chemistry with his proposal of a periodic
structure for the elements. Linnaeus famously
proposed that relationships between biological
species are best explained by a tree structure, rather
than a simpler linear order (premodern Europe’s
“great chain of being”) or some other form.

Such structural insights have long been
viewed by psychologists and philosophers of
science as deeply mysterious in their mecha-
nisms, more magical than computational. Con-
ventional algorithms for unsupervised structure
discovery in statistics and machine learning—
hierarchical clustering, principal components anal-
ysis, multidimensional scaling, clique detection—
assume a single fixed form of structure (42). Un-
like human children or scientists, they cannot
learn multiple forms of structure or discover
new forms in novel data. Neither traditional ap-
proach to cognitive development has a fully
satisfying response: Nativists have assumed that,
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if different domains of cognition are represented
in qualitatively different ways, those forms must
be innate (43, 44); connectionists have suggested
these representationsmay be learned but in a generic
system of associative weights that at best only
approximates trees, causal networks, and other forms
of structure people appear to know explicitly (14).

Recently cognitive modelers have begun to
answer these challenges by combining the struc-
tured knowledge representations described above
with state-of-the-art tools from Bayesian statis-

tics. Hierarchical Bayesian models (HBMs) (45)
address the origins of hypothesis spaces and priors
by positing not just a single level of hypotheses
to explain the data but multiple levels: hypoth-
esis spaces of hypothesis spaces, with priors on
priors. Each level of a HBM generates a proba-
bility distribution on variables at the level below.
Bayesian inference across all levels allows hypothe-
ses and priors needed for a specific learning task to
themselves be learned at larger or longer time scales,
at the same time as they constrain lower-level learn-

ing. In machine learning and artificial intelligence
(AI), HBMs have primarily been used for transfer
learning: the acquisition of inductive constraints
from experience in previous related tasks (46).
Transfer learning is critical for humans as well
(SOM text and figs. S1 and S2), but here we
focus on the role ofHBMs in explaining howpeople
acquire the right forms of abstract knowledge.

Kemp and Tenenbaum (36, 47) showed how
HBMs defined over graph- and grammar-based
representations can discover the form of structure

Fig. 2. Kemp and Tenenbaum (47)
showed how the form of structure in
a domain can be discovered by using
a HBM defined over graph gram-
mars. At the bottom level of the
model is a data matrix D of objects
and their properties, or similarities
between pairs of objects. Each square
of the matrix represents whether a
given feature (column) is observed
for a given object (row). One level
up is the structure S, a graph of rela-
tions between objects that describes
how the features in D are distributed.
Intuitively, objects nearby in the graph
are expected to share similar feature
values; technically, the graph Laplacian
parameterizes the inverse covariance
of a gaussian distribution with one
dimension per object, and each feature
is drawn independently from that dis-
tribution. The highest level of abstract
principles specifies the form F of
structure in the domain, in terms of
grammatical rules for growing a graph
S of a constrained form out of an
initial seed node. Red arrows repre-
sent P(S|F) and P(D|S), the condi-
tional probabilities that each level
specifies for the level below. A search
algorithm attempts to find both the
form F and the structure S of that form
that jointly maximize the posterior
probability P(S,F|D), a function of the
product ofP(D|S) andP(S|F). (A) Given
as data the features of animals, the
algorithm finds a tree structure with
intuitively sensible categories at mul-
tiple scales. (B) The same algorithm
discovers that the voting patterns of
U.S. Supreme Court judges are best
explained by a linear “left-right” spec-
trum. (C) Subjective similarities among
colors are best explained by a circu-
lar ring. (D) Given proximities between
cities on the globe, the algorithm dis-
covers a cylindrical representation
analogous to latitude and longitude:
the cross product of a ring and a
ring. (E) Given images of realistically
synthesized faces varying in two di-
mensions, race and masculinity, the
algorithm successfully recovers the un-
derlying two-dimensional grid struc-
ture: a cross product of two chains.
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governing similarity in a domain. Structures of
different forms—trees, clusters, spaces, rings,
orders, and so on—can all be represented as
graphs, whereas the abstract principles under-
lying each form are expressed as simple gram-
matical rules for growing graphs of that form.
Embedded in a hierarchical Bayesian frame-
work, this approach can discover the correct
forms of structure (the grammars) for many
real-world domains, along with the best struc-

ture (the graph) of the appropriate form (Fig.
2). In particular, it can infer that a hierarchical
organization for the novel objects in Fig. 1A
(such as Fig. 1B) better fits the similarities peo-
ple see in these objects, compared to alternative
representations such as a two-dimensional space.

Hierarchical Bayesian models can also be
used to learn abstract causal knowledge, such
as the framework theory of diseases and symp-
toms (Fig. 3), and other simple forms of intui-

tive theories (38). Mansinghka et al. (48) showed
how a graph schema representing two classes
of variables, diseases and symptoms, and a pref-
erence for causal links running from disease to
symptom variables can be learned from the
same data that support learning causal links be-
tween specific diseases and symptoms and be
learned just as fast or faster (Fig. 3, B and C).
The learned schema in turn dramatically accel-
erates learning of specific causal relations (the
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Fig. 3. HBMs defined over graph schemas can explain how intuitive theories
are acquired and used to learn about specific causal relations from limited
data (38). (A) A simple medical reasoning domain might be described by
relations among 16 variables: The first six encode presence or absence of
“diseases” (top row), with causal links to the next 10 “symptoms” (bottom
row). This network can also be visualized as a matrix (top right, links shown
in black). The causal learning task is to reconstruct this network based on
observing data D on the states of these 16 variables in a set of patients. (B)
A two-level HBM formalizes bottom-up causal learning or learning with an
uninformative prior on networks. The bottom level is the data matrix D. The
second level (structure) encodes hypothesized causal networks: a grayscale
matrix visualizes the posterior probability that each pairwise causal link
exists, conditioned on observing n patients; compare this matrix with the
black-and-white ground truth matrix shown in (A). The true causal network
can be recovered perfectly only from observing very many patients (n =
1000; not shown). With n = 80, spurious links (gray squares) are inferred,
and with n = 20 almost none of the true structure is detected. (C) A three-
level nonparametric HBM (48) adds a level of abstract principles, represented by
a graph schema. The schema encodes a prior on the level below (causal network
structure) that constrains and thereby accelerates causal learning. Both schema
and network structure are learned from the same data observed in (B). The

schema discovers the disease-symptom framework theory by assigning var-
iables 1 to 6 to class C1, variables 7 to 16 to class C2, and a prior favoring
only C1 → C2 links. These assignments, along with the effective number of
classes (here, two), are inferred automatically via the Bayesian Occam's razor.
Although this three-level model has many more degrees of freedom than the
model in (B), learning is faster and more accurate. With n = 80 patients, the
causal network is identified near perfectly. Even n = 20 patients are sufficient
to learn the high-level C1→ C2 schema and thereby to limit uncertainty at the
network level to just the question of which diseases cause which symptoms.
(D) A HBM for learning an abstract theory of causality (62). At the highest
level are laws expressed in first-order logic representing the abstract
properties of causal relationships, the role of exogenous interventions in
defining the direction of causality, and features that may mark an event as an
exogenous intervention. These laws place constraints on possible directed
graphical models at the level below, which in turn are used to explain patterns
of observed events over variables. Given observed events from several different
causal systems, each encoded in a distinct data matrix, and a hypothesis space
of possible laws at the highest level, the model converges quickly on a correct
theory of intervention-based causality and uses that theory to constrain
inferences about the specific causal networks underlying the different systems at
the level below.
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directed graph structure) at the level below.
Getting the big picture first—discovering that
diseases cause symptoms before pinning down
any specific disease-symptom links—and then us-
ing that framework to fill in the gaps of specific
knowledge is a distinctively humanmode of learn-
ing. It figures prominently in children’s develop-
ment and scientific progress but has not previously
fit into the landscape of rational or statistical lear-
ning models.

Although this HBM imposes strong and
valuable constraints on the hypothesis space of
causal networks, it is also extremely flexible:
It can discover framework theories defined by
any number of variable classes and any pattern
of pairwise regularities on how variables in
these classes tend to be connected. Not even the
number of variable classes (two for the disease-
symptom theory) need be known in advance. This
is enabled by another state-of-the-art Bayesian
tool, known as “infinite” or nonparametric hier-
archical modeling. These models posit an un-
bounded amount of structure, but only finitely
many degrees of freedom are actively engaged
for a given data set (49). An automatic Occam’s
razor embodied in Bayesian inference trades off
model complexity and fit to ensure that new
structure (in this case, a new class of variables) is
introduced only when the data truly require it.

The specific nonparametric distribution on
node classes in Fig. 3C is a Chinese restaurant
process (CRP), which has been particularly in-
fluential in recent machine learning and cogni-
tive modeling. CRP models have given the first
principled account of how people form new
categories without direct supervision (50, 51): As
each stimulus is observed, CRP models (guided
by the Bayesian Occam’s razor) infer whether
that object is best explained by assimilation to
an existing category or by positing a previously
unseen category (fig. S3). The CrossCat mod-
el extends CRPs to carve domains of objects
and their properties into different subdomains or
“views,” subsets of properties that can all be
explained by a distinct way of organizing the
objects (52) (fig. S4). CRPs can be embedded in
probabilistic models for language to explain
how children discover words in unsegmented
speech (53), learn morphological rules (54),
and organize word meanings into hierarchical
semantic networks (55, 56) (fig. S5). A related
but novel nonparametric construction, the Indian
buffet process (IBP), explains how new percep-
tual features can be constructed during object
categorization (57, 58).

More generally, nonparametric hierarchical
models address the principal challenge human
learners face as knowledge grows over a life-
time: balancing constraint and flexibility, or the
need to restrict hypotheses available for gener-
alization at any moment with the capacity to
expand one’s hypothesis spaces, to learn new
ways that the world could work. Placing non-
parametric distributions at higher levels of the
HBM yields flexible inductive biases for lower

levels, whereas the Bayesian Occam’s razor en-
sures the proper balance of constraint and flex-
ibility as knowledge grows.

Across several case studies of learning abstract
knowledge—discovering structural forms, caus-
al framework theories, and other inductive con-
straints acquired through transfer learning—it
has been found that abstractions in HBMs can
be learned remarkably fast from relatively little
data compared with what is needed for learning
at lower levels. This is because each degree of
freedom at a higher level of the HBM influences
and pools evidence from many variables at lev-
els below. We call this property of HBMs “the
blessing of abstraction.” It offers a top-down
route to the origins of knowledge that contrasts
sharply with the two classic approaches: nativ-
ism (59, 60), in which abstract concepts are as-
sumed to be present from birth, and empiricism
or associationism (14), in which abstractions are
constructed but only approximately, and only
slowly in a bottom-up fashion, by layering many
experiences on top of each other and filtering
out their common elements. Only HBMs thus
seem suited to explaining the two most striking
features of abstract knowledge in humans: that it
can be learned from experience, and that it can
be engaged remarkably early in life, serving to
constrain more specific learning tasks.

Open Questions
HBMs may answer some questions about the
origins of knowledge, but they still leave us
wondering: How does it all start? Developmen-
talists have argued that not everything can be
learned, that learning can only get off the ground
with some innate stock of abstract concepts such
as “agent,” “object,” and “cause” to provide the
basic ontology for carving up experience (7, 61).
Surely some aspects of mental representation
are innate, but without disputing this Bayesian
modelers have recently argued that even the most
abstract concepts may in principle be learned. For
instance, an abstract concept of causality expressed
as logical constraints on the structure of directed
graphs can be learned from experience in a HBM
that generalizes across the network structures of
many specific causal systems (Fig. 3D). Following
the “blessing of abstraction,” these constraints
can be induced from only small samples of each
network’s behavior and in turn enable more ef-
ficient causal learning for new systems (62). How
this analysis extends to other abstract concepts
such as agent or object and whether children ac-
tually acquire these concepts in such a manner re-
main open questions.

Although HBMs have addressed the acqui-
sition of simple forms of abstract knowledge,
they have only touched on the hardest subjects
of cognitive development: framework theories
for core common-sense domains such as intui-
tive physics, psychology, and biology (5, 6, 7).
First steps have come in explaining develop-
ing theories of mind, how children come to
understand explicit false beliefs (63) and in-

dividual differences in preferences (64), as well
as the origins of essentialist theories in intui-
tive biology and early beliefs about magnetism
in intuitive physics (39, 38). The most daunting
challenge is that formalizing the full content
of intuitive theories appears to require Turing-
complete compositional representations, such as
probabilistic first-order logic (65, 66) and prob-
abilistic programming languages (67). How to
effectively constrain learning with such flexible
representations is not at all clear.

Lastly, the project of reverse-engineering the
mind must unfold over multiple levels of anal-
ysis, only one of which has been our focus here.
Marr (68) famously argued for analyses that in-
tegrate across three levels: The computational
level characterizes the problem that a cognitive
system solves and the principles by which its so-
lution can be computed from the available inputs
in natural environments; the algorithmic level de-
scribes the procedures executed to produce this
solution and the representations or data structures
over which the algorithms operate; and the im-
plementation level specifies how these algorithms
and data structures are instantiated in the circuits
of a brain or machine. Many early Bayesian mod-
els addressed only the computational level, char-
acterizing cognition in purely functional terms as
approximately optimal statistical inference in a
given environment, without reference to how the
computations are carried out (25, 39, 69). The
HBMs of learning and development discussed
here target a view between the computational and
algorithmic levels: cognition as approximately op-
timal inference in probabilistic models defined
over a learner’s subjective and dynamically growing
mental representations of the world’s structure, ra-
ther than some objective and fixed world statistics.

Much ongoing work is devoted to pushing
Bayesian models down through the algorithmic
and implementation levels. The complexity of
exact inference in large-scale models implies that
these levels can at best approximate Bayesian
computations, just as in any working Bayesian
AI system (9). The key research questions are as
follows: What approximate algorithms does the
mind use, how do they relate to engineering ap-
proximations in probabilistic AI, and how are
they implemented in neural circuits?Much recent
work points toMonte Carlo or stochastic sampling–
based approximations as a unifying framework
for understanding how Bayesian inference may
work practically across all these levels, in minds,
brains, and machines (70–74). Monte Carlo in-
ference in richly structured models is possible
(9, 67) but very slow; constructing more efficient
samplers is a major focus of current work. The
biggest remaining obstacle is to understand how
structured symbolic knowledge can be represented
in neural circuits. Connectionist models sidestep
these challenges by denying that brains actually
encode such rich knowledge, but this runs counter
to the strong consensus in cognitive science and
artificial intelligence that symbols and structures
are essential for thought. Uncovering their neural
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basis is arguably the greatest computational
challenge in cognitive neuroscience more
generally—our modern mind-body problem.

Conclusions
We have outlined an approach to understanding
cognition and its origins in terms of Bayesian
inference over richly structured, hierarchical gen-
erative models. Although we are far from a com-
plete understanding of how human minds work
and develop, the Bayesian approach brings us closer
in several ways. First is the promise of a unifying
mathematical language for framing cognition as
the solution to inductive problems and building
principled quantitative models of thought with a
minimum of free parameters and ad hoc assump-
tions. Deeper is a framework for understanding
why the mind works the way it does, in terms of
rational inference adapted to the structure of real-
world environments, and what the mind knows
about the world, in terms of abstract schemas
and intuitive theories revealed only indirectly
through how they constrain generalizations.

Most importantly, the Bayesian approach lets
us move beyond classic either-or dichotomies
that have long shaped and limited debates in
cognitive science: “empiricism versus nativism,”
“domain-general versus domain-specific,” “logic
versus probability,” “symbols versus statistics.”
Instead we can ask harder questions of reverse-
engineering, with answers potentially rich enough
to help us build more humanlike AI systems. How
can domain-general mechanisms of learning and
representation build domain-specific systems
of knowledge? How can structured symbolic
knowledge be acquired through statistical learn-
ing? The answers emerging suggest new ways
to think about the development of a cognitive
system. Powerful abstractions can be learned sur-
prisingly quickly, together with or prior to learn-
ing the more concrete knowledge they constrain.
Structured symbolic representations need not be
rigid, static, hard-wired, or brittle. Embedded in a
probabilistic framework, they can grow dynam-
ically and robustly in response to the sparse,
noisy data of experience.
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